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ABSTRACT

This thesis develops an automated microoroqrammina

system. This system "s desiqned around the aoals of useful-

ness, usability, and security. The Problem of mutually-

dependent fields in a vertically formatted microinstruction

is addressed, and a solution to this problem is presented.

The Proposed microproqrammina system is orqanized around a

series of menus which are presented to a microproqrammer so

that she can build microroutines by workina on each micro-

instruction at a hiqh abstract level.

4

'. .*.°s

. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
.................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



TABLE OF CONTENTS

I.. DESIGN APPROACHES TO COMPUTER CONTROL UNITS ------ 8

A. DESIGN OF HARDWIRED CONTROL UNITS -------------9

B. DESIGN OF MICROPROGRAMMED CONTROL UNITS ------ 19

C. ADVANTAGES AND USES OF MICROPROGRAMMING ------ 23

II. MICROPROGRAMMING METHODS ------------------------- 27

A. DIFFICULTY OF MICROPROGRAMMING --------------- 27

B. LEVELS OF kBSTRACTION IN PROGRAMMIN(r LANGTJAGFq 29

C. LOW-LEVEL MICROPROGRAMMING ------------------- 30

n. HIGH-LEVEL MICROPROGRAMMING LANGUAGES -------- 33

E. CRITICISM OF HIGH-LFVEL MICROPROGRAMMINr.

LANGUAGES ------------------------------------ 37

III. PROPOSED MICROPRO.RAMMIN SYSTEM ----------------- 41

A. GOALS OF THE SYSTEM -------------------------- 41

B. THE TARGET MICROPROGRAMMABLE MACHINE --------- 47

1. The AM29203 Evaluation Board ------------- 47

2. AM29203 Evaluation Board Microinstruction

Format ----------------------------------- 54

C. ENVIRONMENT OF THE SYSTEM -------------------- 57

D. STRUCTURE OF THE PROGRAM --------------------- 62

IV. USING THE PROPOSED MICROPROrRAMMING SYSmFM ------- 67

A. DESIGN PROBLEM OF THE AM2qO4 SHIFT/STATUS

CONTROL CHIP --------------------------------- 67

B. UPPER-LEVEL MENUS ---------------------------- 78

C. THE AM2q2O3 ALU MENTTS ------------------------ 87

5

.. i



0. AM 2910 SEOUENCER PORTION OF THE MICRO-

INSTRUCTION I----------------------------------107

E. MEMORY COMMANDS AND MESCELLANEOUS FUNCTIONS -- 115

V. SUMMARY, QUF.STIONS, AND FUTURE RESEARCH ---------- 119

A. SUMMARY OF MrJTUALLY-DEPENnENT FIELDS --------- 119

B. STATUS OF PROJECT ---------------------------- 123

C. AREAS OF OTIESTION ------------------------------ 124

D. FUTURE RESEARCH ------------------------------ 125

E. CONTRISrITIONS OF RESEARCF -------------------- 126

LIST OF REFERENCES ------------------------------------ 127

INITIAL DISTRIBUTION LIST ----------------------------- 128

6

il-

--------------.~.....-..-.



ACKNOWL EDG EM ENT S

I would like to thank two people for their special

assistance during my studies at the Naval Postgraduate

School. The first is Capt. Brad Mercer, USAF, who first

introduced me to the background theory found in this thesis.

I thank him for his great classes and for reading my thesis.

The second person is Dr. Paula Strawser who taught me how to

microcode, offered software engineering ideas during the

design phase of this thesis, and also offered her comments

on tche final version.

7



I. DESIGN APPROACHES TO COMPUTER CONTROL UNITS

The discipline of Computer Science has evolved as the

result of repeatedly applying two approaches to the solution

of problems. The first approach is the decomposition of the

entire problem or application into small, more manageable

pieces; the second approach is to find a simpler algorithm

for the application.

The decomposition of a problem can be done with two

methods. The first is to see the application as a series of

levels: The top level provides an abstract explanation of

the application, and each lower level explains the applica-

tion with an increasing amount of detail and complexity.

The second method is to divide the application into separate

components and to analyze each component in increasing

detail.

An example of the division of a system into separate

components is the traditional decomposition of a von Neumann

digital computer into the five sections of control,

arithmetic and logic, storage, input, and output. Each of

these blocks can then be examined in detail or implemented

in various ways which will not impact the other four

remaining blocks. For example, the control block of a

digital computer can be implemented using a hardwired config-

uration of gates and flip-flops or with a technique known as

microprogramming. The implementation of a method of storage

8
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or inout/outout operations will not be affected by the

choice of control unit.

This example of control unit Ipsian can be extended to

explain the second aporoach to achieving order and simoli-

city in diqital systems. Microoroarammina was oriainallv

developed as an attempt to find a reqular and orderly hard-

ware method to replace the jumbled mass of qates, flio-flops,

and connections in a hardwired control unit. [Ref 1: p 1591

Microproorammina should also improve a comouter enaineer's

efficiency by providina an orderly and flexible desian tool

for the control block. An objective of this thesis will be

to explore regular and ordered techniques for exoressino

microoroqrams. As a framework for the detailed dcscriotion

of microororamming, the next section describes the control

unit of a von Neumann diaital computer and its hardwired

implementation.

A. DRSIGN OF HARDWIRED CONTROL UNITS

A diqital computer, from the user's point of view, is a

problem-solvinG machine. The user supplies inout data, a

switch is thrown, and output is oroduced. A more concrete

view is held by the computer enaineer who sees the system as

an elaborate array of interconnected flip-floos and looic

gates which transfers information around the system. [Ref

2: p 41 A comouter scientist's view of a diaital system is

a combination of the abstract and concrete views. She knnws

9



that the computer consists of hardware structures made from

the enqineer's flip-flops, qates, and loqic paths; however,

the computer scientist also realizes that the ourpose of the

computer is to interpret and execute user-written

instructions which will access user-orovided data in order

to solve the stated problem. The responsibility of

directinq this Problem solution belonas to the control unit.

This job can be described as information transfer amonq the

five functional units of the computer. This information

transfer will decide which instructions to execute, what

data to use as operands, and which hardware components to

activate. The control unit communicates with control

siqnals which choose the correct data path, and it activates

specific loqic qates and flip-flops. [Ref. 3: D 521

Information transfer can best be explained by analvzina

the instruction interoretation and execution cycle of a

stored proqram computer. A sample oroqram and hardware con-

fiquration will be used to assist the exolanation. The

examole user Problem is to add a constant 2 to a 2 stored at

a memory location and store the result back into memory. In 2

assembly and machine lanauape for a hypothetical achine,

the instructions and their direct addresses in main memory

miqht be as follows:

ADDR Assembly Inst Machine Inst

Proqram storaqe

000 LDI 002 001 010
001 ADn 004 010 100
010 STR 005 0ll 101

10

......... ..... . . . . . . ......



011 STP 000 100 000

Data storaqe
100 000 002 000 010
101 000 nO0 nO0 On

This proqram will load the constant 2 into the

accumulator, add to the accumulator the contents of memory

location 004, store the resultant sum into memory location

0n, and stoo execution.

ALU

MEMORY AC .

C A

14AR CONTROL
UNIT

Fiaure 1 [Ref 5: p 2rq)1
Samole Hardware Configuration

The samole hardware configuration is found as Picure 1.

The simole comauter consists of a main memorv, a control

unit, an arithmetic and looic unit, and five soecial nuroose

reaisters. These reqisters are the instruction reqister

11'
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replaced, and the underlying computer organization is not

affected. A computer can also respond more easily to new

performance demands and problem solutions. A richer or a

larger instruction set can be implemented, and a more

responsive system is ready to start work.

Other advantages of microprogramming include change-

ability, economy, and ease of education. It is possible to

have more than one instruction set resident in a single

digital computer. It is also possible to allow for numerous

architectural characteristics to be chosen and implemented.

This is accomplished by having more than one control memory

containing microprograms resident within the system. The

programmer would be able to choose the hardware

configuration or the instruction set which best matches the

performance criteria of her problem. The economy of

microprogramming is a result of its simplicity. Since there

is less circuitry in a microprogrammed computer, less

sequential logic will need to be procured in order to

implement a rich and full instruction set. The systematic

design approach taken for microprogrammed control units may

also reflect a savings in design time. The simplicity and

order in the internal circuitry of a microprogrammed machine

and the methodical techniques used in its design make it

easier to teach microprojramming to system designers and

engineers. Flowcharts and microprograms written in symbolic

languages are the tools for the microprogrammer; the

25



in terms of internal hardware, orqanization, and structure;

but each computer contained a comprehensive instruction set

that could be used by any family member to interpret and

execute machine lanouaqe instructions. This idea bv T9M

started the use of a conceot known as unward and downward,

compatibility.

Another exploitation of the flexibility of microoroaram-

minq is in the transformation of a qeneral purpose comouter

into a specialized oroblem machine. In a hardwired computer,

it is the responsibility of the proqrammer to tailor the

system to solve her problem by usinq numerous aeneral

purpose instructions. If a specific problem needs to be

solved many times, it can be placed in the hardware by beina

microoroqrammed. With the use of a microoroarammed control

unit, a microoroqrammed subroutine would be implemented

inside the control store as one microproqram with a sinqle

correspondinq machine lanquaqe instruction. The hardware

would then better support the oroarammina environment, and

oroarammers would find oroqrammina a more efficient task.

Microproqrammed control units are also easier to develon

and maintain. The substitution of simple, repetitive memory

structures makes the desiqn process easier. Also, concepts

used in software enqineerinq such as modularity, information

hidina, and structured proqramminq can be applied to the

creation of microproqrams. It is easier to maintain and

improve microproqrams since only the control store is

24
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definition of microprogramming that relates it to an analy-

sis of levels of abstraction. Microprograms contain

information that control hardware at a primitive level, and

these microprograms are stored in a special memory and

sequenced as stored programs, A computer will be termed

microprogrammed if the instructions which are directly

fetched, decoded, and executed correspond to the primitive

operations that the machine performs. [Ref. 7: p 4]

C. ADVANTAGES AND USES OF MICROPROGRAMMING

Since the inception of microprogramming in 1949, advances

in memory technologies have provided advntages for control

unit design and have provided many uses for microprogramming.

Several sources point to the advantages of microprogramming

as the design method for control units. The primary advan-

tages are flexibility and maintainability. It is very easy

to add a machine language instruction to an instruction set

or to change the entire instruction set in a microprogrammed

system. All that is required is for a new control store to

be designed which will hold the improvements and to replace

the old control store. All other circuitry and hardware

within the computer system will not be affected. [Ref. 7:

p 5; Ref. 2; p 72]

IBM was one of the first organizations to exploit the

flexibility of microprogramming when it designed the System/

360 family of computers. All of the family members deffered

23
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line passes into the first random access memory, called a

rectifier matrix by Prof. Wilkes. The outputs of this

matrix are the control signals which operate the various

gates and flip-flops associated with the micro-operations.

The output lines of the decoding tree also pass into

rectifier matrix B, and its outputs are connected to

register II. The contents of register II are the address of

the next micro-instruction to be executed. Before the

control pulse is applied to the decoding tree, the contents

of register II are transferred to register I. the decoding

tree is now ready to provide Matrix A with the address of

the next micro-instruction whose output will be the next set

of control signals for the various hardware components.

This application of clock pulses alternatively to the input

of the tree and to the connection between register I and II

causes the predetermined sequence of microinstructions to be

executed. [Ref. 1; p 159]

A succinct description of the above process is provided

by Hayes. Microprogramming is a method of control unit

design where control signal selection and sequencing

information are contained in a random access memory. The

control signals which are to be activated at a particular

time are specified by the micro-instruction which has been

fetched from the control memory. Each microinstruction will

also specify the address of the next microinstruction to be

executed. [Ref. 5; p 271] Rauscher and Adams provide a

22
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The micro-control unit is shown in Ficure 4; it consists

of a decodina tree, two random access memories, and two

recisters. A series of clock pulses will be qenerated and

applied as an input to the decodin tree; the output acti-

vated from the tree depends upon the contents of reqister I.

This action corresponds to step 2 of the instruction inter-

pretation and execution cycle; this is how an oblect code

instruction is decoded by the microproqram. The output line

FROM IR .

i REERe 1 1

REGISTER II

..... MATRIX A MATRIX B

.. -. .. .r. . . . .. . . . . . . . . . . . . . . .

C..1 OL R.S. . ."-. .
OM IRD SICrA. CONDgITIONAL

FLIP FI.DP

Fiqure 4 [Ref. 1: T) 1591
Wilkes' Oriqinal Desiqn of a Microproqrammed Control Unit

will contain the address within the random access memory v

which is the first micro-instruction of the microproqram for

the object code instruction found in the IR. This output[-

21 ..
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micro-oPerations; examples of micro-oPerations are PCou t ,

MARin, and ACCin. Basic machine ouerations like

addition are made uD of a microproqram of micro-operations.

Those micro-operations which take place durinq the same

clock pulse are placed into the same micro-instruction. The

process of writing a microprogram is similar to writina an

application proqram in machine language. [Ref. 1: p 1591

This idea places microproqramminq not only in the realm of

hardware design but also into the areas of concern for

software enqineers. Consequently, concepts like information

hiding and hierarchical, modular design can be used to

advantaae in microproqramminq.

For microproqramminq to work, certain hardware structures

are required. The machine must contain a permanent raoia-

access storage device which will hold the microproqram.

Means are also required to determine and effect the sequen-

cinq or order of the microinstructions for both sequential

and conditional control flow. A microoroqrammed system

consists of two parts. The first is the control register

unit; this is a group of registers and the ALU toqether with

a switching system which enables transfers to be made. The

second part is the micro-control unit; its concern is to

control the sequence of those micro-instructions required to

carry out each object code instruction and to cause the

proper control signals to be qenerated.

20
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since, most often, the entire control unit must be redesiqned

and replaced. The desire to incorporate order, modularity,

flexibility, and maintainability in control unit desiqn

leads to the development of a different type of control

unit.

B. DESIGN OF MICROPROGRAMMED CONTROL UNITS

In 1949, Professor Maurice V. Wilkes of the University

of Cambridae set out to find a better way to orcanize the

control functions of a diqital computer system. At that

time, Wilkes invented the method of control unit desian

known as microproqramminq. Wilkes' desiqn qoal was to eli-

minate the randomness of control logic and replace it with

an orderly loqic matrix. The concept of microoroqramminq.

makes it easier to understand the control function and to

build hardware because it replaces the complex circuitry

with a reoetitive, ordered array of memory cells. In addi-

tion to reducinq complexity, microproramminq qives diqital

systems new flexibility; the control flow can be chanaed

without redesiqning the hardware. rRef. 3: o 541

The best illustrations of what microprorammina really

is and how it works come from the oriqinal work oublished by

Maurice Wilkes. His description beqins with definitions.

The operation called for by a sinqle machine instruction can

be broken down into a seouence of more elementary ooera-

tions. These elementary operations are referred to as

19
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The ad hoc construction of the encoder and decorder

results in complexity which will increase in prooortion to

the size and completeness of the machine lanquaae instruc-

tion set. An unmanaqeable and confused tangle of qates and

interconnections often results from the minimizations of the

loqic equations and the ad hoc combinations and uses of

gates, flip-flops, their interconnections, and the size of

CONTROL
STEPCOUNTER

DRCOCER

IN~ ~N o 1 sws;i

CONDITION
INS 3 CODES

CONTROL SIGNALS

Figure 3 [Ref 4: p 1121
Hardwired Control Unit

the instruction set. The resultinq hardwired control units

are difficult to test and maintain since the control unit

has no order or regularity. Chanqes are also exDensive

r
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or execution; the step of the cycle where the control signal

must be generated; and the presence and state of condition

codes necessary for signal activation. Our example will be

the control signal for the end of a program. The END

control signal will be generated for the instructions which

require it, within the specified clock cycle, and with the

testing of the needed condition code. The logic equation of

an END is END = T8 * ADD + T7 * BR + (T7 * N = T4 * BRN +.

ADD BR N BRN

BR Nq

TT 7  T 7  T 4

Figure 2 [Ref. 4: p 1131
Implementation of Logic Equation

The physical implementation of the above equation is found

as Figure 2. The equations and their physical implementa-

tions are completed for every control signal. All of these

independently-designed logical implementations are placed

into the control unit. A hardwired control unit is shown as . -

Figure 3.

17
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signals into another set of unique signals which will effect

the opening and closing of gates on the selected data paths.

[Ref. 3: p 52]

A third description of a hardwired control unit is as an

assemblage of interconnected combinational and sequential

networks that function as a finite state machine. [Ref. 6:

p 3] Hayes' state table approach would be used for this

control unit. The main points about hardwired control units

to be remembered are the unique nature of the pattern of

bits for each instruction and the instruction-unique control

signals which are generated after decoding the object

language instruction.

Hardwired control units are designed in an ad hoc manner

with the computer designer reducing logic equations and

drawing block diagrams until a satisfactory arrangement is

found that meets the cost, schedule, and performance

requirements. The process of deriving the equations and

their logical implementation will be described. First, all

of the control signals which need to be generated to imple-

ment all the machine language instructions in the computer's

repertoire are listed. Examples of some of these are

PCout, MARin, Read, Write, MDRout , and END.

Multiple combinations of the following three items will be

listed for each control signal belonging to the target

digital computer being designed: Each instruction which

required that specific control signal for interpretation

16
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the order specified by the above cycle. These control

signals in the proper sequence effect the interpretation and
execution of user-provided instructions. It should be noted

that the first two steps for every instruction are the same;

this is the interpretation portion of the cycle. Mainly,

this cycle changes a static machine into a dynamic problem-

solver. Two techniques have been• applied in the design of

control units so that this transformation can be made; they

are hardwired control units and microprogrammed control

units.

Hayes describes hardwired control units as those that

use fixed logic circuits to interpret instructions and

generate control signals. There are three possible design

approaches for this type of control unit: 1) the sequential

circuit design of switching theory with the construction of

a state table for the control unit, 2) a method based on the

use of delay elements for control signal timing, and 3) a

method that uses sequence counters for timing purposes.

[Ref. 5: p 245] Patterson also provides a description of

hardwired control. In a hardwired control system, a network

of electronic logic is devised that will recognize each

object code instruction in the computer's instruction set;

each object code instruction is a pattern of signals which

are sent to the control unit. This network decodes the

instruction. The control system will transform these

15
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the constant 2 is placed into the ACC. Step 4, oerform the

function, and step 5, store the result, do nothina for this

particular instruction.

Step Pulse Logical Physical

3 T4 ACC <= [IR(riqht)] ACC <= 010

Interpretation and execution of the kflD instruction is

done in the same manner.

Step Pulse Loqical Physical

1 Ti MAR <= [PC] MAR <= 001

T2 IR <= [[MAR]1 IR <= 010 100

2 T3 PC <= [PC1 + 1 PC <= 010

3 T4 MAR <= [IR(riqht)] MAR <= 100

T5 MDR <= [[MAR11 MDR <= 000 00

4 T6 ACC <= [ACCI + [MDR] ACC <= 010 + 010

The third instruction, the store, is interpreted and

executed as follows:

Step Pulse Loqical Physical

1 T1 MAR <= [PC1 MAR <= 011

T2 IR <= [[MAR11 IR <= 011 101

2 T3 PC <= (PCi + 1 PC <= 011

3 T4 MDR <= [ACCI MDR <= 100

T5 MAR <= [IR(riqht)l MAR <= 101

4 T6 enable write siqnal

5 T7 [[MAR11 <= [ACCI [1011 <= 100

The control unit of a digital computer is concerned with

the transfer of information by qeneratinq control siqnals in

14
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of the five steps in the instruction interpretation and

execution cycle may require register transfers. mhe steps

in the example refer to the instruction interpretation and

execution cycle, wh... the T's refer to the clock pulse. In

step 1, the followina reqister transfers will take Place:

Step Pulse Logical Physical

1 TI MAR <= (PC] MAR <= 000

T2 IR <= ((MAR11 IR <=001 010

In step 2, the instruction to be executed is determined

by decoding the left half of the instruction register. Each

instruction in a digital computer's instruction set is

identified by a unique pattern of bits. These bits are

found in the left half of the IR, interoreted by the control

unit, and instruction-specified siqnals are qenerated in

steps 3, 4, and 5. In the case of the load-immediate

instruction, the control unit knows that the ooerand is

contained in the rioht half of the IR. If the instruction

were a load from a memory location, the contcol unit would

know that an address was contained in the riaht half of the

IR and would qenerate those control sionals which would

qenerate a memory access. Also, the PC is incremented in

this step.

Step Pulse Loqical Physical

2 T3 PC <=(PC] + 1 PC <= 001

-* In step 3, the operands are fetched and placed into the

appropriate reqisters. For the load immediate instruction,

13
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(IR) which holds the current instruction, the program

counter (PC) which contains the address of the next instruc-

tion, the memory address register (MAR) which contains the

location in memory to be accessed for a read or write opera-

tion, the memory data register (MDR) which will hold the

data that has been read from or will be written to the main

memory, and the accumulator register (ACC). At the start of

execution, all the registers are cleared to 0.

An instruction can be viewed as a request to the control

unit to generate control signals which activate specific

data paths so that information can move among the functional

units and between the registers. The control signals also

activate the arithmetic and logic unit (ALU) so that desired

functions will be performed. [Ref. 2: p 4] The instruction

interpretation and execution cycle will cause the correct

signals to be generated in the correct order. The cycle can

be decomposed into five steps: 1) fetch the instruction, 2)

decode the instruction and increment the PC, 3) fetch the

required operands, 4) perform the function, and 5) store the

result. [Ref. 4: p 107]

In step 1, the contents of the PC are transferred to the

MAR, and the contents of the memory location specified by

the MAR flow from main memory through the MDR into the IR.

These inter-register and inter-unit transfers can be ex-

pressed in a shorthand known as Register Transfer Language.

One comment must first be made about the steps. Fach

12
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hardwired control unit designer will use sequencing and tim-

ing sheets in addition to complicated hardware logic sheets.

The tools will be easier to teach. [Ref. 2: pp 72-75]

Rauscher and Adams provide an outstanding summary of the

various uses of microprogramming. The first application is

in emulation. With emulation, the instruction set of one

computer is embedded into the control store of a different

computer. The host computer will interpret and execute

machine language instructions as the target machine would.

One current use of this technique is the emulation of new

architectures for research purposes. Another use of emula-

tion is in a software first machine. During the acquisition

" *phase for a computer system, different machines could be

- evaluated by loading their instruction set into a software

*first machine and running benchmark programs against each

*. target computer.

.* A second application of microprogramming is in the area

of operating systems. Current work in this area has two

° - approaches. The first is to implement primitives that are

used throughout the operating system as microprograms, and

•- the second is to implement important portions of the operat-

ing system as microprograms. A third application of

* .microprogramming is in the support of higher-level language

e. programs. In this approach there can be many machine lan-

guages for each high level language. Each machine language

would be targeted to a different performance criteria for

26
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the high level language. A fourth development is the use of

high-level microprogramming languages. In this application,

a user's program would be written in a high-level language

which would be continuously translated until the lowest

level of language would be microcode. There would be no

interaction between an object code program and

microprograms. The last use of microprogramming pointed to

its use in architecture implementations. Examples include

pipeline structures, floating point processors, and multi-

and distributed processing. [Ref. 7: pp 16-18]

II. MICROPROGRAMMING METHODS

A. DIFFICULITY OF MICROPROGRAMMING

Although Maurice Wilkes developed a more systematic

method for control unit design, microprogramming wasn't used

commercially unitl the early 1960s. During the 1950s, it

was felt that any computer system which would use micro-

programming as the implementation of a control unit would

not meet the speed requirements in terms of instruction

interpretation and execution times. When Wilkes conceived

his different approach to control unit design, rapid access

memories were not available. Advances in the semiconductor

industry solved this problem, and a fast and cheap RAM was

available by the early 1960s. As the amount of information
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stored on a chip increased, the price declined, and rapid

access to the microinstructions became possible. Micro-

programming had become practical in terms of hardware. IBM

was the first computer vendor to produce a family of

microprogrammed computers. [Ref. 6: p 56] Since the early

1960s, several other computer vendors have developed

microprogrammed digital computer systems; some of these

vendors are Hewlett Packard, Digital Equipment Corporation,

and Burroughs.

While microprogrammed control units were being imple-

mented by major computer manufacturers, the task of creating

the various microprograms was not easy. Microprogramming is

a very labor-intensive task. A microprogrammer may spend

hours just to optimize, by hand, 10 or 20 microinstructions.

This time-consuming task has become infeasible when the

current size of microprograms is considered. [Ref. 8: 702]

Nothing was automated in the process of creating microcode;

the microprogrammer worked at a very low level with a binary

language. The opportunity for error was quite high, and the

microprogrammer was forced to remember address and bit posi-

tions in their absolute terms instead of using memonics and

symbolic labels. A first step toward automating the produc-

tion of microcode was meta-assemblers, but they still have

left many problems. These problems will be discussed in

section C--Low Level Microprogramming.
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The creation of large microoroqrams usinq high-level

microprogramminq lanquaqes is a current approach to the

problem of creatina larqe microproqrams in a realistic time

frame. In order to provide a context for the discussion of

hiqh-level microproqramminq languaqes, a discussion of hiah-

level lanquaqes and their impact on problem solution is ore-

sented next.

B. LFVELS OF kBSTRACTION IN PROGRAMMING LANGUAGES

A computer system and the oroblem that it will solve can

be decomposed by viewing the system and the specific problem

as levels of abstraction. This concept can best be

explained by lookinq at the various classes of proqramminq

languages. The top-level abstract explanation of the prob-

lem can be done in a higher-level Enqlish like Pseudo-code.

Then a high-level computer languaqe like Pascal exoresses

the problem in Enqlish-like statements which are imoossihle

for the computer to understand without further translation.

The next level is the translation of the hiqh-level lanauaae

into an intermediate-level lanquaqe which is closer to the

type of lanquaqe understood by the computer. This inter-

mediate languaqe is then translated a final time into obiect

code. This object code is the lowest or next-lowest level

of proaramminq lanquaqes, dependinq upon how it is

interpreted and executed. If the hardware structures which
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* interpret and execute the object code instructions are

randomlv-confiqured loqic qates and flip-flos, the object

code is the lowest level of decomposition. The object code

may, however, be further interoreted and the program

executed after interaction with another level of language

known as the microprogram. This is the lowest-level

statement of the problem but is a more aeneral low-level

lanquaqe which interprets each object lanquaqe instruction

statement and activates various hardware structures in order

to solve the target problem.

In the history of proqramminq lanquaqes, the earliest

proqrams were written in machine languages. Hiqh-level

languages evolved as a method to make problem statement and

solution easier for people to express and develop. These

hiqher-level lanauaaes require compilers, assemblers,

linkers, and loaders as translators. These translators

introduce an overhead cost because of the interaction of the

operatinq system, the system software, and the aplication

oroaram. Machine efficiencv is reduced because of the

various translations.

C. LOW-LEVEL MICROPROGRAMMING

Microcode was oriqinally produced, much like machine

code, with the microoroqrammer workinq in a binary machine

lanquage. She would also be responsible for optimizinq this

30
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microcode by hand. No automated tools or microsystem

software was available. The history of the development of

microprogramming tools and languages parallels that of

application programming languages. The first step was the

production of meta-assemblers which introduced the use of

mnemonics to microprogramming.

Meta-assemblers represent the bits associated with a

particular field of the microinstruction with a mnemonic

name. For example, a mnemonic for the bits representing the

ALU Source fields might be ASOURCE. Creating a microprogram

using a meta-assembler is a two-step process. The first

step is to define the language in terms of the mnemonics and

assign a bits(s) position to the mnemonic. As an example, a

48-bit microinstruction will be used. The last four bits

indicate the flow of control within the microprogram. A

binary 1110, or a hex E, indicates a continue to the next

microinstruction. The mnemonic would be CONT and would

represent a bit pattern of 1110 in bits 44-47. Part of

creating the mnemonics is defining the structure of the

microword. The length of the word is determined, and the

various field meanings and representations are created. A

second part of creating microcode using a meta-assembler is

writing the actual microcode which solves the target prob-

lem. The example of the hardwired control unit design of

adding two and two will be recreated here in the format used

by a meta-assembler to illustrate this approach to creating

microcode.
31
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0. NOOEY,RAMAB,NOP,RAM, ,,, LDIR,RF,RF,CONT

1. ,RAMAB,INC,RAM,CIONE,,, RF,RF,JMAP

2. LDI: NOOEY,RAMAB,NOP,RAM,,,READIR,RIRI,JZ

3. ADD: NOOEY,RAMAB,NOP,RAM,,,READIR,RA,RA,CONT

4. NOOEY,RAMAB,NOP,RAM,,, Read,R2,R2,CONT

5. OEY,RAMAB,ADDRAM,CIZERO,,, R1,R2,JZ

6. Store: NOOEY,RAMAB,NOP,RAM,,,READIR,RA,RA,CONT

OEY, RAMAB,INCRS,YBUSCIZERO, ,RA, R2 ,JZ

7. Stop: ,,,,,,,R8,CJP

This method of creating microcode using a meta-assembler

has the advantage that some automation of code construction

has occurred. The microprogrammer no longer is forced to

remember which bits control which hardware structures; she

may now use mnemonics which suggest the hardware function,

and she is freed from having to remember how many bits
a.'

determine the hardware function. This method is still error

prone because the mnemonics are postion dependent. It would

be easy to place the mnemonics out of order, misspell one of

them, or to forget one of the commas. The microprogrammer

is not totally freed from memorization because the mnemonics

must be remembered or written down. Another point that

requires mentioning is that there is a translation phase

involved with this method--the mnemonics must be translated

into microcode. The microproqrammer is still forced to

state the problem at a very low level. A very good

knowledge of the hardware structures, their control signals,

32

. . ... .~. ....................-



and the microprogramming language is required since design

is done one low-level statement at a time.

D. HIGH LEVEL MICROPROGRAMMING LANGUAGES

Increased demand for systems and applications written in

microcode suggests that a higher-level of abstraction may be

required for microprogramming languages. Three developments

point to this new requirement. The first is a change in the

authors of systems written in microcode. Traditionally,

computer architects were the only people who wrote micro-

code; now people outside of the architectural group, but

still inside the company, need to write microcode for their

systems. A common example is the designers of an operating

system who want to implement certain speed-critical parts of

their system in microcode. These people are interested in

the speed benefits of microprogrammed systems, but they do

not want to learn all the details of the machine which would

be required if a meta-assembler were used. A higher level

microprogramming language would enable a more abstract

problem definition, and the operating systems' designers

could more easily produce microcode. [Ref. 8: p 704]

Another requirement for the use of levels of abstraction in

microprogramming languages is the increasing complexity of

computer architectures. The primary result of this is

larger instruction sets for the macro-level machine language
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which will cause more complex and larger microroutines. As

an example, the PDP 11/70 used 256 microinstructions to

implement the machine language while the VAX 11/780 requires

more than 5000 microinstructions. [Ref. 8: p 704] The third

demand for high-level microprogramming languages is the

ability to tailor a computer system. Computer users want to

realize the advantages of transforming a general-purpose

problem solver into one with a specific architecture focused

on their applications. The basic instruction set can be

enlarged or optimized for a particular task. The ability to

microprogram a systeL has made this type of refinement

possible. A high-level microprogramming language will allow

the users of a system to perform such tailoring in a

reasonable timeframe [Ref. 2: p 57].

High-level microprogramming languages (HLML) should pro-

vide an increased measure of programmer efficiency similar

to that of other high-level languages such as PASCAL. The

hierarchical structures of HLML may make it easier to

perform global optimizations which provide more of a speed

efficiency than hand optimzations. [Ref. 8: p 704] David A.

Patterson at the University of California, Berkeley, has

developed an ALGOL-derived HLML named STRUM. The goal of . -

his work was to determine the impact of modern programming

techniques on microprogramming. [Ref. 8: p 700] He wished

to demonstrate that a high-level language, structured pro-

gramming, and program verification would improve the
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correctness and efficiency of microororams. Patterson felt

that his research had produced an efficient hiqh-level

lanquaqe. He first pointed out that the use of a HLML made

the Production of code easier. Secondly, the code is under- =

standable, which is important from the maintenance ooint of

view. [Ref. R: p 7041 Microcode is seldom maintained by the

person who created the original version; thus readability is

an important criteria for the code. STRUM also provided the

level of abstraction desired by non-comouter architects and

required for describing complex computer architectures.

Another microprogramming lanquage was also developed at

the University of California, Berkeley, by David A. Patter-

son, Karl Lew, and Richard Tuck. Their qoal with this

lanquaqe was to investigate the possibility of creatinq an

efficient high-level microproqramminq languaqe that would be

machine independent. Their first step in this direction was

to produce a machine-independent low-level languaqe which

they named Yet Another Low Level Languaqe (YALLL). [Ref q:

p 221 The creators of YALLL felt that this was a qood first

step beause it would not he difficult for a compiler to

Produce YALLL, and optimizers would be able to translate

YALLL into efficient microcode. [Ref. 9: o 221 YALLL shared

the cirteria of readability and understandability; these

same features were found when comparino early macro-low-

level lanquaaes with machine code. [Ref. 9: o 231
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It is necessary to look at both the advantages and

disadvantages of high-level microprogramming languages.

From the STRUM and YALLL studies, Patterson and his fellow

researchers concluded that rroblem definition and solution

were earier to write and understand in the higher-level

microprogramming languages. This is a reasonable conclusion

considering the precedent in application-directed high-level

languages. The conclusion was also drawn that a problem

definition and solution written and executed using a high-

level microprogramming language would have a speed advantage

over a problem definition written in a conventional

programming language. A reason for this conclusion is that

the final translated version of the high-level problem

solution (the object code) would not have to interact with

general-purpose microroutines to activate the hardware

facilities. A last advantage of high-level microprogramming

languages as seen by Patterson was that they optimized the

microcode. In the research for both STRUM and YALLL, the

resultant microcode was compared against microcode prepared

for the same problem definition either with a meta-assembler

or by hand. In the case of STRUM, the microcode produced

was as efficient as that produced by hand. [Ref. 8: p 705]

In the YALLL study, the code was comparable with that

produced for one of the target computers. [Ref. 9: p 24]
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E. CRITICISM OF HIGH-LEVEL MICROPROGRAMMING LANGUAGES

The Practitioners of microoroqramminq have been slow to

accent hiqh-level microorogrammina languaqes. It is the

speed of the control unit which determines the speed of the

problem solution. (Ref. 2: p 521 The main criticism about

usinq microproqramming as the means to generate control

signals is the time reauired to fetch and decode each micro-

instruction before the control signals can be produced.

[Ref. 4: p 251) Speed and efficiency of execution has been

more of a concern with microproqramminq lanquaqes than with

application programming at the macro level since microcode

is the language level closest to the hardware of the

machine. The speed of problem solution directly depends

upon the speed of microroutine interpretation and execution.

When high-level microoroqrammina lanouaqes are intro-

duced for problem solution, this speed disadvantage is

compounded. The primary uses of microproarammina are

instruction set implementation, emulation, and speed-sensi-

tive operatinq systems apolications. These uses are not a

direct utilization of microorogramminq to solve a specific

problem. In these cases, microoroqramming is a tool used by

the hardware and the systems software to accomplish general

Problem solution. Each reference to the microcode will in-

volve the layers of decomposition associated with any hiqh

level programminG lanquaqe. The time penalty may be intoler-

rable. While the work accomplished with STRUM and YALLL by
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Patterson is a sound approach to high-level application-

specific problem solution, the tradeoff cannot be afforded.

The user/writer of an application in a high-level

microprogramming language must forego speed advantages at

execution in order to make problem definition and solution

easier to write and more understandable to read. When

microprogramming is seen in the context of a tool used by

the system, the speed requirement is paramount.

A last criticism addresses the knowledge required by the

user of a high-level microprogramming language. This task

requires a working knowledge of both language and compiler

design, Backus-Naur Form for describing the grammar of the

language, and an intimate familiarity with the hardware

structures and their associated control signals. If a

language like STRUM were available, the user of the system

would still have to be familiar with the hardware in order

to tailor STRUM to her specific application. STRUM is a

machine-dependent high-level micro-programming language.

The approach of using a high-level microprogramming

language to define and solve a target problem may not he

suitable when considering the tradeoffs involved. Meta-

assemblers are also undesirable because of the low level of

detail at which the microprogrammer must work. A middle-

ground solution is neede which allows the production of

speed-efficient microcode but removes the drudgery from the
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task of microprogramming. This thesis presents an automated

system which allows the microprogrammer to work on each

microinstruction at an abstract level and provides the

mechanism to produce microroutines.

The implementation described in this thesis assumes that

the microprogrammer has already created the algorithm to

solve the target problem and expressed it in some pseudo-

code. Each step in the pseudo-code algorithm is a

summarization of an individual microinstruction. The

microprogrammer is then ready to access the proposed system

and prepare the algorithm as microcode in its final hex

format. The system will present increasingly detailed menus

beginning at the level of a series of microroutines and

progressing to the actual fields within a specific micro-

instruction. The end product of the system will be user-

named microroutines of varying length constructed from

microinstructions in the binary or hex lowest-level format

required by the target architecture. Although the

abstraction capability for the entire problem in a high-

level language will not be realized with this system, the

microprogrammer can still work at a high level with a

microroutine; and she will realize advantages over the meta-

assembler method. First, the microprogrammer is released

from the drudgery of memorization; the meaning, order, and

spellinq of mnemonics are eliminated. Second, typographical

errors will be reduced since fewer keystrokes are required.
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logic unit (ALU), and the macro-level memory and I/O. The

block diagram of the evaluation board is found as Figure 6.

The main hardware component of the CCU is the AM2910

Sequencer. This microprogram controller is an address

sequencer for controlling the sequence of execution of

microinstructions stored in microprogram memory. Both

sequential access and conditional branching to any address

in microprogram memory is provided. [Ref. 13: p 5-123] N

diagram of the AM2910 microprogram controller is shown as

Figure 7. The other hardware structures include a writable

control store, a mapping PROM which translates an op code

contained in the Instruction Register into an address in the

writable control store, and a pipeline register and

decoding PROM which increases the vertical microprogramming

depth. [Ref. 12: 3-10] 

Tl.e arithmetic and logic unit used in the target

machine is the AM29203 four-bit microprocessor slice. This

ALU chip can perform seven arithmetic and nine logical

functions on two four-bit operands. AM29203s can be

cascaded to provide for varying length operands. The -,

evaluation board cascades four AM29203 ALUs to allow the

handling of 16 bit operands. Sixteen special functions are

also supported which facilitate division, multiplication,

binary/BCD conversions, and mormalization. [Ref. 13: p 5-

342] Figure 8 is a block diagram of the AM29203, and Figure

9 is a diagram of how the four AM29203s are connected on the

evaluation board.
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dependent or subordinate fields. The proposed system does

not meet this goal. In the history of programming lang-

uages, the original low level languages and even FORTRAN

were machine dependent. [Ref. 10: p 41] The proposed system

and its menus are predicated on a specific microprogrammable

target machine and a fixed microinstruction format. This

goal of retargetability is still important, and it must be

considered as a primary goal for the next system designed to

ease the task of microprogramming.

B. THE TARGET MICROPROGRAMMABLE MACHINE

1. The Am29203 Evaluation Board

In order to build a new technique for generating

microcode and to test the new method, a target

microprogrammable digital system is required. Available at

the Naval Postgraduate School is a prototype of the AM29203

Evaluation Board. This board was initially designed for

microprogramming experiments. It is built from various

bipolar chips produced by Advanced Micro Devices in

Sunnyvale, Ca. The chips used belong to the AM2900 family.

The evaluation board is used only for explanation of the

microprogramming technique created by the proposed system.

Other microprogrammable systems are available and could also

be used to demonstrate how this online microprogram

generator functions.

The target microprogrammed system consists of three

sections: computer control unit (CCU), the arithmetic and
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A last source of error which the proposed system

attempts to prevent is subordinate fields. Dependent upon

the choices made for the value of a field within the

microinstruction, other fields within that same

microinstruction or another microinstruction will need to be

completed or contain a specific value. In a manual system,

the microprogrammer must remember what these fields are and

if any constraints are placed on the value that the field in

question may hold. The proposed system will present the

microprogrammer with the menus for the subordinate fields,

and only the legal choices will be displayed for selection.

If the fields affected are in another microinstruction, the ."

user will be warned what range of values must be in the

preceeding or succeeding microinstruction. It is the

microprogrammer's responsibility to reference the preceeding

word or remember the requirement for the succeeding micro-

instruction. Figure 5 shows the data path taken by the

system when the microprogrammer is selecting the next micro-

store address source.

The last goal of general purpose applicability is

difficult to implement when considering the various

microprogrammable architectures and microinstruction

formats. The top-level capability is to allow a micropro-

grammer to select any target machine and design her own

microinstruction format in terms of length, field size,

position, and hardware component controlled, and mutually
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dependent fields and subordinate fields. A microinstruction

format is described as horizontal or vertical. In a hori-

zontal microinstruction format, each field will have only

one use or meaninq. If the microinstruction format is

vertical, all or some of the fields will have more than one

use. For example, the same field may be used to hold a

microstore branch address, a register selection value, or a

constant value to be loaded into a counter. The exact

meanino of this field will depend upon the exact value of

other fields in the microinstruction. As a further

extension of the vertical format example, suppose that the

fields which interact are the ALU source field, the above

described branch address field, and the sequencer control

field. If the next microstore address is based on a

conditional branch, the branch address field would contain a

register selection if an ALU source operand is contained in

that selected reqister. A field conflict will exist with

shared fields. In the above hypothetical microinstruction,

the next microinstruction address cannot be determined by a

conditional branch if one of the ALU source operands is

contained in a reqister. In a manual micronroqramminq

system, the micronrogrammer miqht not recognize and correct

such a conflict. With the proposed system, the ALU source

operand will be checked aaainst the next microstore address

to see if a conflict was Present; if a discreoancv is

present, the microproqrammer will be warned.
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entering is in response to menus, and all but one response

are one character long.

The most important criterion of a usable system is that

it replicate the process that is used to create microcode by

hand. In this particular case, the order in which menus are

presented should closely approximate the order in which the

microprogrammer completes fields in the microinstruction

when using a manual system. Basically, there is a one-to-

one correspondence between a field in the microinstruction

and the scope of each menu. The basis for replicating the

manual process is ease of use. Microprogrammers tend to

approach the fields of the microinstruction in the same

order. If the system presents the same fields in the same

order, the microprogrammer will find the system easy to

learn and use.

The goal of security is motivated by a desire to

eliminate errors made by microprogrammers. Security is not

considered to mean protection of one microprogrammer's code

from another microprogrammer. Security as defined in the

scope of this thesis refers to protecting the micropro-

grammer from herself. No action made by the microprogrammer

which violates the format or the contents of the microin-

struction should go undetected. [Ref. 10: p 527] The reduc-

tion in keystrokes, memorization, and table lookups should

eliminate some errors. The most important errors which need

to be handled by the system are the interaction of mutually
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is the capability to have all the work done during the

terminal session saved to a disk file or to build the

system's data structure from a disk file at the start of a

terminal session. A complete session will walk a

microprogrammer through all the levels of abstraction from

many micro-routines to a single field in a specific

microinstruction. Once the microprogrammer makes a choice,

the system should know the requisite order in which to

present the menus. The mechanism is also needed which

allows the microprogrammer to navigate the various levels,

save or destroy all completed work, and terminate the

session. A useful system provides all the actions that a

micropro-grammer would reqire once no algorithm is complete.

The usability of the system refers to the man-machine

interface provided by the system. This man-machine inter-

face should allow an easy creation of microcode. First, the

microprogrammer needs to be relieved of the requirements to

memorize mnemonics and to refer to various references for

required information about the microinstruction or the

architecture. The menus summarize all tables and present

comprehensive choices to the user. All that a micropro-

grammer should require to create microcode using this system

is the detailed algorithm and the file name of the system.

Secondly, the entry requirement needs to be reduced. With

this system, the microprogrammer r nger enters mnemonics

or the actual binary or hex values for the fields. All
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III. PROPOSED MICROPROGRAMMING SYSTEM

A. GOALS OF THE SYSTEM

The proposed microprogramming system design was driven

by the four goals of usefulness, usability, security, and

general purpose application. The system would be considered

useful if a microprogrammer would perfer to use it as

opposed to using other microprogramming methods currently

available. Another criterion for usefulness is the correct-

ness of the microcode. If the microroutines created by a

microprogrammer using the proposed system correctly and

efficiently solved the target problem/application, then the

design would be considered useful.

A comprehensive system is a last component of useful-

ness. A system must anticipate all the actions that a

microprogrammer would need to make in order to build micro-

routines. These actions, at the level of the series of

microroutines, are the ability to scan the names of all

existing microroutines and print the microroutines. The

microprogrammer is given the ability to name/create, find,

list, add, and delete a specified microroutine. An existing

microinstruction can be located based upon a key and then

modified or deleted. New microinstructions can be inserted

into an existing microroutine or added to the bottom of the

Microroutine. The last action required by a microprogrammer

41

... . .. . ............. -. ---- ••,.,. . .. . " .............................. .. ...



The menu responses are only one character. Third, table

lookups which are required for selectinq the value of

mnemonics or determininq the exact meanina of a mnemonic are

also eliminated because the tables are summarized and

reproduced in the menus. Further error control is provided

by automatically processinq mutually-dependent fields. The

microorogrammer does not have to remember the mutually-

dependent fields or those fields whose meaninq and use are

determined by the choice made in another field. For

example, if the function chosen for the ALL] of a hypothe-

tical machine restricts the possible ALU source operands,

the microprogrammer will only be allowed to choose

permissible sources.

The method proposed in this thesis for writinq microcode

is an improvement over methods currently in use. The method

attempts to preserve the speed efficiency of microcode by

producing code in its lowest level of abstraction while the

microproqrammer is spared the traditional tedium of workinq

at such a low level. The next chaoter provides a detailed

explanation of the proposed system.
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The second maior hardware component found in the ALU

section is the AM2904 Status and Shift Control Unit. This

integrated circuit performs the miscellaneous functions

which are required to support an ALU. The AM2904 is three

nearly independent blocks of logic which provide shift link-

ages, status registers and condition code checking, and the

carry-in for the ALU. Figure 10 is a block diagram for the

AM2904. [Ref. 13: p 5-72]

2. AM29203 Evaluation Board Microinstruction Format

The microinstruction consists of 48 bits which are

organized into three major fields. A qeneral microinstruc-

tion format is provided as fiqure 11. These three main

groupinqs of fields correspond to the three main hardware

components of the evaluation board.

OPERAND ALU CONDITION SHIFT JMICROIN- NEXT
REGISTER OPERATIONS CODES AND STRUCTION ADDRESS
ADDRESS CARRY BRANCH SELECT

I--
AM 29203 AM 29203 AM 2904 AM 2904 AM 2910 AM 2910

Fiqure 11 [Ref. 12: p 3-5]
General Microinstruction Format

The first portion of the microinstruction controls

the hardware associated with the AM29203 ALIJ. This Dart of

the microinstruction is shown in detail in fiqure 12. The

first three bits are the register address select fields

which specify either the pioeline register in the CCU or the
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Macro Instruction Register as the sources of ALU operands o

the destination of an ALU operation. The next bit is the

instruction enable which controls whether the result of an

ALU operation is written to any of the ALU RAM registers if

they are the selected destination. The next bit is also an

enable which determines if the ALU output appears on the Y

REGISTER I 0 DESTINATION BASIC
SELECT E E SOURCE FUNCTIONSPECIAL

N Y FUNCTION

Figure 12
AN29293 ALU Portion of the Microinstruction

bus. The Y bus is the major data bus in the evaluation

board. The last three fields are the ALU Source Operand

selection, ALU destination selection, and ALU function

selection.

'S
CARRY C C H C SHIFT/
IN 15-I0 E E I M COMMAND

M M F D FIELD
T

Figure 13
AM2904 Shift/Status Control Portion of Microinstruction

Since the AM2904 chip performs the different func-

tions of carry-in, status-checking, and the setting-up for

conditional tests, many of the bits within the microinstruction
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control different hardware structures. The first two bits

of the AM2904 portion of the microinstruction control the

carry-in when it is 1, 0, or the output of the ALU. The

next six bits are the Instruction Lines for the AM2904 and

are numbered 15-10. These are the six bits that most

strongly bring to light the problem of mutually-dependent

fields. These bits control what is done to the micro and

the macro status registers, the state of the carry-in if the

carry-in's source is a status register or an immediate

input, and the register and the condition reflected in a

conditional test. A detailed discussion of these six bits

and their associated problem of mutually-dependent fields is

contained in the next chapter. The next two bits are the

enable bits for the Macro Status Register and the micro

status register. The last six bits are primarily concerned

with the shift linkages required by the ALU special

functions or ALU destination. These bits are also used by

the board to enable communications off the board, to enable

memory reads and writes, and to load the Instruction

Register. The first bit in this section is the shift bit

which enables or disables the shift linkages, the second bit

is the command bit, and the last four bits help to uniquely

determine the actual shift pattern or the miscellaneous and

memory function to be performed by the system. The complete

layout of the center sixteen bits of the microinstruction is

provided as figure 13.
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The last set of fields belong to the AM2910

sequencer whose format is illustrated in figure 14. The

first two bits, bits 15 and 14, provide for a breakpoint in

execution and a spare bit. Bits 13-4 are the multiple-

purpose bits that were described in an earlier example.

This Branch Address Field contains a branch address, the RAM

register ipentifiers for an ALU operation, or a constant

which can be loaded into a counter or register. The last

four bits are the AM2910 sequencer command field which

implement sequential or conditional flow of control within a

microroutine.

B S BRANCH ADDRESS FIELD 2910
K P SEQUENCERp A 1 1 - CONSTANT ..
T R j [ Ra COMMAND

T R a Rb

Figure 14
AM2910 Sequencer Portion of the Microinstruction

C. ENVIRONMENT OF THE SYSTEM

The proposed microprogramming system was coded in

Berkely Pascal, and it is run on a VAX 11/780 computer under

the control of the UNIX operating system. It is an inter- -:

active program which presents the microprogrammer with a

series of menus. There are various paths through the system

depending upon the choices made by the microprogrammer. The

microprogrammer can proceed in both directions through the

hierarchy of the system.
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The data structure used by the program is a linked list

which contains two types of records. This structure allows

the user flexibility when performing operations on micro-

routines and microinstructions. With a linked data

structure, the insertion, deletion, and location of various

records is facilitated. Figure 15 is a logical representa-

tion of the linked list. The top linked list provides

microroutine information; each link contains the name of a

microroutine which serves as a key for locating a specified

microroutine, a pointer to the next microroutine, and a

pointer to the first microinstruction in that microroutine.

The remaining links within the structure contain data for

one microinstruction. This information consists of a record

holding a sequential count of the microinstructions within

one microroutine, the hex value of the microinstruction

organized into three fields corresponding to the major hard-

ware components on the AM29203 Evaluation Board, a set con-

taining each class of all mutually-dependent fields, and the

choice made by the microprogrammer for each class. The use

of the set and the choices will be further explained in

later sections. Figure 16 graphically represents the

structure of a microinstruction node; Figure 17 is included

to show the actual Pascal code used to create both the

microroutine and the microinstruction nodes in the list.

The count is used to consecutively number the

microinstructions within a microroutine, and it is used as a
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~2

ROUTINE name ROUTINE name ROUTINE name

nil nil

WORD info WORK info

nil

WORD info

WORD info

WORK info

nil

Figure 15

Logical Representation of Linked List
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COUNT 1AM 29203 1AM 2904 AM 2910

MI CRO MACRO CARRY C TE ST YOU T '

RAM BRANCH SHIFT COMMAND PASS

MICRO choice MACRO choice CARRY choice CTEST choice

CTEST2 choice YOUT choice SHIFT choice C1AND choice

Figure 16
Microinstruction information Node

key to locate or insert a microinstruction. The last item

is a pointer to the succeeding microinstruction. All links

in the data structure are dynamically provided by the Pascal

environment.

All of the menus have the same general format. All of

the legitimate choices are shown with an alphanumeric

character to indicate the response desired from the micro-

programmer, the current mnemonic for the field, and an

English languge summary of the mnemonic. After the choices

are enumerated, a HELP option is provide which will direct

the microprogrammer to various references. The last choice

is a RETURN which will save the current status of the micro-

instruction or microroutine and return the microprogrammer

to the next higher level of menus in the hierarchy. The

microinstruction and microroutine menus also provide the

mechanism to destroy the current microinstruction or
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type fieldtvpe =Packed array (l..41 of char;
CONFLICTtype =(ricro,macro,carry,ctest,yout,

RAM~hranch,shift,convnanl,pass);
nametype =packed array (1..R1 of char;

ROrJTINEptr =ROUTINErecode;

WORDptr = WORKrecord

WORDinfotype = record
count: inteqer;
AM29203,AN 2904,AM2910: fieldtyve;
CONFLICTclass: set of CONFLICTty~e:
MICROchoice,MA.CROchoice,CARRYchoice,CTESTchoice,
CTEST2choice,Yu'JTchoice,SHIFTchoice,COMMANDchoice:

char
end;

(The Microroutine Node *
ROTITIMEtype = record

ROUTINEnamne: nametype;
ROUTINEnext: ROUTINEPtr;
ROtJTINEfirst: WORDptr

end;

(The Microinstruction Node *
WORDtype = record

WORDinfo: WORDinfotype;
WORDnext: WORDptr

end; -

var ROEJTINElist: ROEJTINEptr (*first node in list *
ROUTINEtop: ROUTINEotr (*current microroutine *

Fiqure 17
Declaration of Master Data Structure
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microroutine and adjust the pointers within the linked list.

An example of a typical menu is found as Figure 18.

MODIFY AN EXISTING MICROROUTINE MENU
What do you want to do?

Type a C to CHANGE the name of the Microroutine
M to MODIFY a Microinstruction
A to ADD a Microinstruction
I to INSERT a Microinstruction
D to DELETE a Microinstruction
L to LIST a Microinstruction
H for HELP with this menu
R to RETURN and SAVE the current Microroutine
A to RETURN and ABANDON the current Microroutine

Figure 18
Typical System Menu

D. STRUCTURE OF THE PROGRAM

The primary organization of the program is based upon

the functions that the microprogrammer will perform during a

terminal session. These functions are a natural hierarchy,

and both the requests for menus and the structure of the

PASCAL code represent this hierarchy. Figure 19 is a

functional chart showing the actions that a microprogrammer

would make when building a microroutine once each routine

has been expressed in a pseudo-code algorithm. Figure 20

illustrates the organization of the program and how it - -

parallels the previous functional chart.
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The additions to the program hierarchy chart are

required for manipulating the linked list and providing for

conversions between hex, decimal, octal, and binary numbers.

Manipulations of the linked list occur at three levels:

system entry and exit, microroutine manipulation, and

microinstruction actions. Upon system entry, the linked

list is built based upon the contents of a disk file. This

file contains all microroutines and their associated

microinstructions created/modified and saved from previous

terminal sessions. At system exit, all previous routines

which have not been explicitly deleted and those routines

which were added/modified during the session will be saved

back to the same disk file. The microprogrammer also has

the option to abandon all previous and current microrou-

tines. Since the dynamic allocation of links by the system

is the method used to acquire the nodes for the linked list,

all of these nodes are deallocated at system exit. A

microprogrammer is given the ability to scan the names of

all microroutines and to receive a hardcopy report of all

the microinstructions within their respective routines. The

microroutine manipulation procedures which can be performed

on existing microroutines include location, deletion,

modification, and on-line listing of all microinstructions.

A new microroutine can also be created and added to the end

of the microroutine linked list.
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The last level of linked list global procedures are

those which provide for microinstructions. It is possible

to locate, modify, and delete a microinstruction based uoon

the contents of the count field. This count field can be

obtained by the microprogrammer by listing in the terminal

the microroutine currently pointed to by the pointer ROUTINE

top. A microinstruction can be inserted between two

existing microinstructions based upon the count field of the

preceeding microinstruction, and a new microinstruction can

be added to the end of a microinstruction linked list. Each

of the microinstruction procedures contains the mechanism to

a;;pcate consecutive integers in the count fields for an

entire microroutine.

Conversion routines are required because the final

format of the microinstruction in each of the nodes of the

microinstruction linked list is three fields each containing

four hex numbers. While several choices from the menus are

hex numbers which can be easily placed into the correct hex

position within the micrcinstruction, some of the fields

affected may be one to three bits in length. These fields

will be worked on at the binary or octal level. A binary-

to-hex conversion is needed to create the final format which

is stored into the nodes.

Auxiliary warning menus are also provided. These menus

warn the microprogrammer about the requirements for succeed-

ing or preceeding microinstruction values which depend upon
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a choice made in the current microinstruction. For example,

if the microprogrammer chooses the instruction register for

the operand R and operand S sources to the ALU, then she

will be warned about the requirement to load the instruction

register in a preceeding microinstruction. If a

microinstruction field conflict exists, a warning will also

be posted. Suppose that the microprogrammer created a

microinstruction where both the ALU Source Field and the

Sequencer command required a value to be placed into the

Branch Address Field. She would receive a warning that a

field conflict existed.

IV. USING THE PROPOSED MICROPROGRAMMING SYSTEM

A. DESIGN PROBLEM OF THE AM2904 SHIFT/STATUS CONTROL CHIP

The problem of mutually-dependent fields is most crucial

with the I5-Io bits for the AM2904 Shift/Status Control

chip. These six bits determine the action for the micro and

the Macro status registers, the carry-in to the AM29203 ALU,

the register to be tested and the condition to be tested

when a conditional test is performed to determine the Branch

Address for the AM2910 Sequencer, and the Y output from the

AM2904. It is not enough that there are five classes of

actions which are controlled by these six bits, but a single

choice within a particular case might be represented by one
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The logic for this menu and a flow of control for the entire

system is shown in Figure 26.

Only two choices from the Master Menu generate other

series of menus. These choices are build Build New Micro-

Build a New Microroutine Menu

What do you want to do?

Type a N to NAME a Microroutine
W to BUILD the new Microinstruction
L to LIST the Microroutine
H for HELP with this Microroutine
R to RETURN and SAVE the current Microroutine
A to RETURN and ABANDON the current Microroutine

Figure 27
Build New Microroutine

routine and Modify Existing Microroutine. The menu for

build a new microroutine is found as Figure 27. Upon entry

to the procedure which processes this menu and calls

subordinate procedures associated with specific choices, a

new microroutine node is created and added to the end of the

microroutine linked list. The microprogrammer can name the

microroutine, build a microinstruction, list the microrou-

tine, receive help, and return to the Master Menu either by

saving or destroying the microroutine. The user is

prohibited from adding a microinstruction or listing the

microroutine until it has been named. If the new micro-

routine is to be destroyed prior to returning to the Master

Menu, the microroutine and its associated microinstructions
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START

A

MASTER
MENU

BUILD 1DELETE
BUILD Y MICRO- I SPECIFIED DEET

ROUTINE MICRO-
j ROUTINE

N N

Y MODIFY ~ PRINT ALL
MODIFY MICRO- IMICRORDUYTIN Y PRINT

ROUTINE

N

SCAN SAVE ALL

SCAN y MES OOFNE" tICRORXJTINES Y
MIC~I~JUI ISAVE

NN

LIST 'tBANDON ALL

LIST Y SPECIFIC -- IROROUTINES Y AV
MICRO-
ROUTINE

N 4

B

Figure 26
Overview of System
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B. UPPER LEVEL MENUS

There are four upper level menus which the micropro-

gramer must use before she can begin work on the separate

AM2900 Family Microprogramming System

Master Menu

What do you wish to do?

Type a B to BUILD a new Microroutine
M to MODIFY an existing Microroutine
D to DELETE an existing Microroutine
S to SCAN the names of existing Microroutines
L to LIST a specific Microroutine
P to PRINT a hardcopy listing of all Microroutines
H to HELP with this menu
R to SAVE all work and RETURN to system level
A to ABANDON all microroutines and RETURN

Figure 25
Master Menu

fields in a microinstruction. The first menu is shown as

Figure 25. The menu is the Master Menu to the system, and

it presents to the user the ability to perform all desired

microprogramming functions. As functions are completed,

con-trol will return to this menu until the user indicates

that she is finished. The choices available are build a

micro-routine, modify an existing microroutine, scan the

list of microroutine names, list a specific microroutine,

delete a microroutine, and print a hardcopy report of all

microrou-tines. A help option is provided. The last two

choices provide for system exit; either all microroutines

are saved to a disk file or all microroutines are destroyed.
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found between the first and second lists, links in the third

list are compared with the current choice in the second

list. If a match is found between these two lists, then the

bit pattern from the third list must be compared to the

current node in the first linked list.

This process will continue with all remaining lists

until a match is found or all the choices among the various

classes have been exhausted. The indication of an unresol-

vable conflict is when the first vertical list no longer

contains nodes to be used as the base for the search and a

match has not been found. The algorithm used to walk the

third data structure is included in flowchart form as Figure

24. This example only processes three lists. More lists

could be processed by a further nesting of the code. Since

the horizontal ordering of the vertical lists is random, the

lists cannot be pointed to by MICROptr, MACROptr. etc..

They are referred to in the order in which they appear as

FIRST, SECOND, etc., and a permanent pointer to the top of

each list is used and named topFIRST, topSECOND, etc.. The

final action of the procedure WALKCHOICES is a posting to

the microinstruction of the correct value of bits I5-Io, or

the presentation of a warning menu to the microprogrammer.

This warning menu will show the microprogrammer the choice

that she has made in each class.
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built to hold all the possible bit patterns for that choice.

The number of links for a choice may range from one to

seven. Each class of action chosen by the microprogrammer

for the current microinstruction will have its own vertical

linked list. If the microprogrammer has decided to check

the status of both the Macro and the micro status registers

and perform a conditional test, there will be three vertical

linked lists. The first two will contain seven nodes, and

the last list will contain only one node. Each time that a 7.

choice is made, a vertical list is built and the entire

structure is searched to check for conflicts and determine

the value to be placed into bits I5-I0. If a class of

action is chosen a second time for the current microinstruc-

tion, the old vertical linked list must first be removed and

replaced by the list representing the most recent choice in

that class.

The search for a match involves comparing nodes in each

vertical list until a node in each list is compatible with a

node in every other list. At the start of a search, the

first node of the first vertical list is compared against

each node in order in the second list until a match is

found. If a match is not found and there are more nodes in

the first list, the process is repeated with the second node

of the first list and all nodes in order of the second list.

This iterative process continues until a match is found or

no nodes remain in the first vertical list. Once a match is
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MICRO tap CARRY tap CTEST tap
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nil
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Figure 23Logical Representation of AM2904 Linked List
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The second structure used is a set consisting of all the

five classes of action. The names of the classes are the

same as the index of the above described array. Only one

choice per class is allowed. The set is used to enforce

this rule. Each time the microprogrammer makes a choice

which affects the value of bits 15-Io, the class of that

choice is determined by the program and that class's status

in the set is checked. If the class is in the set, the

microprogrammer has already made a choice in that class for

the current microinstruction. The old choice will be

removed from the third data structure and replaced by the

new decision. If the class is not in the set, then this is

the first time that a choice in that class has been made;

the set will reflect the current status of the class, and

the new choice will be added to the third data structure.

If the hypothetical microprogrammer has chosen to activate

the Macro status register and perform a carry-in, macro and

carry will be in the set; micro, ctest, and yout will not be

in the set.

The last and most important data structure is a linked

list which is walked either to find a match or to determine

if an unresolvable conflict exists. The format for each of

the nodes and the hypothetical example completed as a linked

list are shown in figure 23. When the microprogrammer makes

a choice involving bits 15-10, a vertical linked list is
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a seven-position array with each position holding the packed

array of a possible bit pattern. Three data structures are

used to automate the assignment of a value to bits I5-I.

These structures are an array, a set, and a linked list.

The Pascal code used to allocate the data structures is

included as figure 21; it is included to assist in

understanding the solution of mutually-dependent fields in

the AM2904 portion of the microinstruction. The first

_ ACRe n o choice made l

CARRY micro carry in

CTEST !micro carry"-'

YOUT no choice made

Figure 22 -

The Array Data Structure

structure is a one-dimensional array which is shown for a

hypothetical case in figure 22. It is indexed by the five

classes of action, and each of the five positions are

initialized to 'no choice made'. A description of the

action chosen by the microprogrammer for each class is

stored in this array. As an illustration of the example

array, the microprogrammer desires to load the microstatus

register direct. The position in the array indexed by micro

would contain the character string "load msr direct."
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tyoe STATtJStype =packed array (1-.61 of char;

CHOICEclass =(micro .. yout);

STATUSIotr =STATUSrecord;

(This record is the actual node in the linked list *

STATUSrecord =record

status: STATEIStype;
next: STATtJSptr;
riqht: STATUSPtr

end;

CHOICEname P acked array [1-.201 of char;
h exranqe = '1 1 2 , I3 I I 4 I '5 I 61 71 18 8 I I 01

var MICROptr,MACROotr,CARRYptr,CTESTptr,YOUTptr: STATUSPtr;
MIRCOtoo,MACROtop,CARRYtop,CTESTptr ,YOLJTptr: STATrJSotr;

CHOICES: array [CHOICEclass] of CHOICEname;
CHOICEset: set of CHOICEclass;

(The followinq arrays contain the actual bit Patterns
for the choice that they reoresent. These values
become the nodes in each of the linked lists. *

resetSIGN, setSIGN, resetOVERPLOW, setOVERFLOW4,
loadrnsr, setmsr, SWAPmsr, resetmsr, loadOVERFLOW,
LOADMSRY, setMSR, SWAPMSR, resetN SR, invertMSR,
carrymicroinvert, carrvMACROinvert, CARRYO, CARRYl,
CarryCx ,SIGNexor, SlGNexnor: STATUStyoe;

loadCARRYmsr, loadcarrymsr: array fl..21 of STATUStyoe; -

loadDIRECTmsr, loadDIRECT4SR: array (1-.71 of STATIJStvne;
microcarrv, MACROcarrv: array (1-.31 of STATUStyoe;
NIICROtest, MACROtest, STATETStest:

array (hexrariqe] of STATEISTYPE;

Fiqure 21
Declaration of AM2904 Data Structure
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the conditional test and the Y output. This is a total of

nineteen bit patterns that must be remembered and which are

involved in trying to resolve the conflict of mutually-

dependent fields.

A microprogrammer should not be required to have to

remember all the patterns and resolve conflicts manually.

The chance for error is greatly increased for a manual

microprogramming system. It would be easy to forget to

include a pattern in the search, make a mistake in compari-

son, or to memorize a pattern incorrectly. The micropro-

grammer should only need to indicate the action desired in

each of the five classes, and an invisible system should

find a match or report an unresolvable conflict. The

proposed microprogramming system will provide this facility.

A data structure is used which stores all the possible bit

patterns for the choice made in each of the five classes of

action. This data structure is examined each time the

microprogrammer makes a choice involving these six bits;

either a match is found among the classes, or the micropro-

grammer is informed of an unresolvable conflict.

In the program, all of possible values for bits I5-I of

the AM2904 portion of the microinstruction are stored. For

example, the bit pattern to swap the Macro status register

with the micro status register, when chosen from the micro

status register menu, is stored in a packed array named

SWAPmsr. All seven values for a loadMSRdirect are stored in
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to seven different values. If the microprogrammer desires

to directly load the Macro status register, there are seven

possible values that she could use. The task of writing a

microinstruction based upon a detailed algorithm becomes

quite difficult and confusing when these six bits are

tackled.

In the meta-assembler method of microprogramming, a

microprogrammer would have to remember the choices of these

six bits in any of the five classes of action needed. The

microprogrammer would also have to remember all the possible

values for a specific choice and resolve all the conflicts

by hand. As an example of the complexity of the task and

the memorization required, suppose that the hypothetical

microprogrammer desires to load the Macro Status Register

direct and the carry-in will originate from the micro status

register. A loadMSRdirect has seven possible bit patterns

and the microcarry has three. Each bit in these patterns

will be either a '1', a '0', or an 'X'. The 'X' represents

a don't-care condition and will match a '1' or a '0'. The

loadMSRdirect pattern of 'lXl01X' conflicts with the

microcarry pattern of 'OXXlXX". However, the loadMSRdirect

pattern of '0XllXX' does match, and there is not a conflict

among the bit patterns for the two classes of action chosen.

A worst case match search would involve seven choices for

both the Macro and the micro status registers, three choices

for the carry-in, and one choice each for both
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will be correctly adjusted. The logic used to build a new

microroutine is illustrated in Figure 28.

The actions which can be taken in modifying an existing

microroutine are based upon the actions permissible in

building a microroutine. Once the microprogrammer has

provided the name of the microroutine to be modified, a

pointer named ROUTINEtop will point to the correct microrou-

tine link. The microprogrammer can change the name of a

routine, modify an existing microinstruction, list the

entire microroutine, and add a new microinstruction. This

last choice, add a microinstruction, causes a new micro-

instruction node to be added to the end of the current

vertical list pointed to by ROUTINEtop. Two additional

capabilities with this menu are insert and delete a

microinstruction. All of the choices are shown in Figure 29

which presents the Modify Microroutine Menu. An insert of a

microinstruction creates a new microinstruction _,de, but

Modify an Existing Microroutine Menu

What do you want to do?

Type a C to CHANGE the name of the Microroutine
M to MODIFY a Microinstruction
A to ADD a Microinstruction
I to INSERT a Microinstruction
D to DELETE a Microinstruction
L to LIST the current Microroutine
H for HELP with this menu
R to RETURN and SAVE the current Microroutine
A to RETURN and ABANDON the current Microroutine

Figure 29
Modify Microroutine
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this node is inserted before the microinstruction specified

by the microprogrammer. The count field is used as a key to

find the succeeding microinstruction. The count field is

also used as a key to find the microinstruction to be

deleted. The system will match the count provided by the

microprogrammer with the count field for either the

succeeding microinstruction for an insert or with the

correct microinstruction for a delete. For both the insert

and the delete options, the pointers with_ n the vertical

linked list must be adjusted and the count fields recomputed

to ensure a sequence. The flow of control for microroutine

modification is shown in Figure 30.

The last menu and its controlling procedure build or

modify the various fields of a microinstruction. Whenever a

microprogrammer chooses to add or insert a microinstruction,

a new microinstruction node is built and correctly placed

into the vertical linked list pointed to by ROUTINEtop. The

Build/Modify Microinstruction procedure is then entered. If

the microprogrammer chooses to modify an existing

microinstruction, the correct microinstruction is found

based upon the count field provided by the microprogrammer.

When a new microinstruction is being built, a pointer will

point to the new microinstruction node which was added to

the linked list. This pointer is passed to the Build/Modify

procedure. The menu for this procedure is provided as Fig-

ure 31. The microprogrammer is presented with the current
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MODIFY

I A

MODIFY
MENU
LOCATE
MIGRORCUTINE

CHANGA

NEW'NODEBUILD/
AD OTMMODIFYA

LIST_________ __________ MICRO-

FIN BU ILD/
INER UCEDIGMODIFYA

NODE MICRO-
___________ INSTRUCT'ION

Y FINDDELETE
DLTMIR-MICRO-A

INSTRCTIONINSTRUCTION

I Figure 30
Modify Microroutine Logic
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binary and hex representations of the microinstruction. A

default value is used for new microinstructions. The micro-

orogrammer may choose to build/modify the ALU portion of the

microinstruction, build/modify the Sequencer portion of the

microinstruction, or perform miscellaneous functions such as

memory writes, loadina the Instruction Reqister, and olacinq

an outout from the AM2904 onto the Y bus. The microoro-

qrammer can also receive help with the menu, or she can

return to either the Build Microroutine Menu or the Modify

Microroutine Menu. Prior to exiting this procedure, the

microorogrammer must decide if the completed microinstruc-

tion is to be saved or destroyed. The logic and the

recursion of this procedure is demonstrated in Fiqure 32.

C. THE AM29203 ALU MENUS

The most complicated part of the system is developing

the ALU oortion of the microinstruction. If the microoro-

qrammer were usinq a manual microoroqramminq system, she

would have to keep track of restricted ALU source choices,

the need to perform up or down shifts, to make status

decisions, the possible values for the carry-in, and the

functions or sources which require a value in the Branch

Address Field of AM2910 Sequencer portion of the micro-

instruction. The master AM29203 ALJ procedure ensures that

all fields of concern within the microinstruction are com-

pleted, provides the correct menus when choices are
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Figure 33
ALU Logic
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restricted, and checks for possible conflicts among the

various fields. As an aid in following the sequence of

actions for completing the ALU portion of the microinstruc-

tion, Figure 33 is provided. The menus are presented in an

order that provides for subordinate fields. For example,

the function chosen by the microprogrammer will determine

the allowable ALU operand source. The specific menu which

presents the allowable choices will be displayed; a general-

purpose source menu requiring the microprogrammer to remem-

ber the restrictions is not used. Field conflicts can exist

with the Branch Address Field, the Shift/Command Field, and

bits 15-10 of the AM2904. The system either warns the

microprogrammer of a conflict or automates the the resolu-

tion of the conflict.

MASTER AM29203 ALU MENU

Count ALU SHIFT/STATUS SEQUENCER
XX XXXXXXXXXXXXXXXX XxxxXxxxxxxXXXXxXXXXXXXXXXX

FFFF FFFF FFFF

The X's indicate bits which are not yet defined

The defaults for the AM29203 are
Register Address Select - bits 47-45 A,B Pipeline = 11
Instruction Enable - bit 44 - Disable = 1
Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ = 111
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do?
Type a B to choose ALU BASIC Functions

S to choose ALU SPECIAL Functions
H for HELP with this menu
R to RETURN to higher level

Figure 34

The first menu presented to the microprogrammer is the

Master AM29203 Menu - Figure 34. The microprogrammer must
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choose a basic ALU function or a special ALU function if she

desires to continue orocessin. Two separate procedures

exist for the different choices of function. The two choices

are separate in the ALU sources allowed and the destination

field. The need for a carry-in or a shift linkaqe is also

determined by different fields dependinq on the choice of

type of function. The special functions have a restricted

set of ALU sources, no destination choice, and the shift

linkaqe is determined by the particlular function chosen.

The basic functions determine either a full or restricted

set of ALU source choices (whose restrictions differ from

those for the special functions), require a destination

choice, and base the shift linkaqes on the destination

choice. Both functions require reqister address selection,

output and instruction enables, and status processina.

AM29203 ALU BASIC FUNCTION MENU

Enter the value correspondina to the function you wish to
perform

0 F = Hiah
1 F = S - R - 1 + Carry-in
2 F = R - S - 1 + Carry-in
3 F = R - S - 1 + Carry-in
4 F = S + Carry-in
5 F = (Not S) + Carry-in
6 F = P + Carry-in
7 F = (Not R) + Carry-in
8 F = LOW
9 F = R exclusive nor S
A F = R exclusive or S
B F = R exclusive or S
C F = R nor S
D F = R nor S
E F = R nand S
F F = Ror S
H for HELP with this menu
R to Return to higher level

Fiqure 36
Basic Function Selection
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The Basic Function branch for microinstruction completion

is shown as Fiqure 35. The first menu presented to the

microproqrammer is the Basic Functions Selection Menu. The

possible basic functions are listed in Fiqure 36. Should

the microprogrammer choose 1 - F = Hiqh, 5 F = (not S) +

Carry-In, 6 F = R + Carry-In, or 8 F = Low, the allowable

AM29203 ALU SOURCE SELECT MENU

You have chosen one of the followinq AM29203 ALU Functions
F = Hiqh
F = R + Carry-in
F = (Not R) + Carry-in
F = Low

The only Allowed AM29203 ALU Sources are
Operand R Operand S Mnemonic
RAM A 0 Register RAMAO
Direct A Q Register DA)

Type a 2 for RAMAO
6 for DAO
H for HELP with this menu
R to RETURN to hiqher level

Fiqure 37
Restricted ALU Source Selection

All other ALU basic functions allow one of the six ALU oper-

and sources displayed in Fiqure 38 to be chosen. ALU basic

AM29203 ALI) SOURCE SELECT MENU

The Source control default is DAQ

What do you want to do?
Operand R Operand S Mnemonic

Enter a 0 RAM A RAM B RAMAB
1 RAM A Direct R RAMADB
2 RAM A 0 Register RAMAO
4 Direct A RAM B DARAMI
5 Direct A Direct B DADB
6 Direct A 0 Reoister DAO
H for HELP with this menu
R to RETURN to a hiqher level

Fiqure 38
General-Puroose AThE Source Selection

93

,- :- .. * .* .. :"* * -. -;.



sources are restricted from a possible for six down to two.

These two choices and their menu are shown in Figure 37.

All other ALU basic functions allow one of the six ALU oper-

and sources displayed in Figure 38 to be chosen. ALU basic

functions 1 through 7 require a carry-in, and the Carry-In

menu is included as Figure 39. Once the ALU operand _"

AM2904 SHIFT/STATUS CONTROL CARRY IN MENU

You have chosen a function which requires a Carry-in

What do you want to do?

Type a 0 to select ZERO as the Carry-in
1 to select ONE as the Carry-in
2 to select Cx, the Z output of the ALU
3 to select the carry bit from the micro status register
4 to select the micro carry bit complemented
5 to select the carry bit from the MACRO Status Register
6 to select the MACRO carry bit complemented
H for HELP with this menu
R to RETURN to higher level

Carry-In Menu
Figure 39

sources and the carry-in have been chosen, the micropro-

grammer is presented the ALU Destination Menu which is

provided as Figure 40. The Choices made from this menu

determine the requirement for a shift linkage. Choices 0

through 3 and 5 require a down shift to be chosen by the

microprogrammer; she is presented the menu of Figure 41.

The up shift menu is presented to the microprogrammer when

she chooses 8 through B or D from the destination menu. The

second shift menu is provided as Figure 42. The format of

these menus represents the shift linkage table that the

microprogrammer would usually refer to in a manual system.

[Ref. 13: p 5-18]
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AM2q203 ALIT DESTINATION MENU

Enter the value corresponding to the destination you desire

0 RAMDA F to RAM, Arithmetic Down Shift
1 RAMDL F to RAM, Loqical Down Shift
2 RAMQDA Double Precision Arithmetic Down Shift
3 RAMODL Double Precision Loqical Down Shift
4 RAM F to RAM with PARITY
5 AD F to Y; Down shift Q
6 LOADO F to Q with PARITY
7 RAMQ F to RAM and 0 with PARITY
8 RAMUPA F to RAM, Arithmetic Up Shift
9 RAMUPL F to RAM, Loaical Uo Shift
A RAMQUPA Double Precision Arithmetic Up Shift
B RAMQUPL Double Precision Loqical Up Shift
C YBUS F to Y ONLY
D QUP F to Y; Up shift 0
E SIGNEXT SIOO to Y(i)
F RAMEXT F to Y; Sign extend least siqnificant bit
H for HELP with this menu
R to RETURN to hiaher level

Figure 40
ALU Destination Selection

95

.........................~...!



L AD-R154 235 IMPLEMENTATION OF A PROPOSED SYSTEM FOR AUTOMATED 2/2
I MICROCODE GENERATION(U) NAVAL POSTGRADUATE SCHOOL

USI FE MONTEREY CA M E PROVANCE DEC 84 FG92 N



..........

W 11L.5=

JILI

I~1220

11111 1.51 1a11_L4 1.IIIINN IIII1 liiiI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

1-.

U" . .-I-. T'2'I'T'L', -i. °' - -T "'' ° °- . '" . ." . -" ." 2 . -" . ." - ' - - . - . --- '''''''''" . . . - " ° - " " " . .



AM2904 SHIFT CONTROL LINKAGE -DOWN SHIFT

Enter the value correspoondinq to the shift linkaqe you desire

0 0 ->RAMn, n - Qn
1 1 ->RAMn, 1 >on

2 0 -RAMn, RAMO->Mc, Mn -On
3 1 -RAMn, RAMO->On
4 MC - RAMn, RAMO ->On

5 Mn ->RAMn, RAMO ->Qn

6 0 -RAMn, RAMO->Qn
7 0 ->RAMn, RAMO -> n, 00 ->MC

8 RAMO ->RAMn, 00 ->On, RAMO ->Mc

9 MC - RAMn, C00- Qn, RAMO ->MC

A RAMO ->RAMn, 00 O> n
B IC - RAMn, RAMO ->Qn

C MC - RAMn, RAMO ->Qn, 00 - MC
D 00 ->RAMn, RAMO ->kOn, 00 -> MC
E In exor IOvr ->RAMn, RAMO ->Qn

F 00 - RAMn, RAMO -> On
H for HELP with this menu
R to RETURN to hiqher level

Figure 41
Down Shift Choices
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AM2904 SHIFT CONTROL LINKAGE - UP SHIFT

Enter the value corresoondinq to the shift linkaae you desire

0 0 -> RAMO, 0 -> 00, RAMn -> Mc
1 1 -> RAMO, 1 -> 00, RAMn -> Mc
2 0 -> RAMO, 0-> 00
3 1 -> RAMO, 1 -> 00
4 On -> RAMO, 0-> QO, RAMn -> Mc
5 On -> RAMO, 1 -> 00, RAMn -> Mc
6 On -> RAMO, 0-> 00
7 Qn -> RAMO, 1 -> 00
8 RAMn -> RAMO, On -> QO, RAMn -> Mc
9 Mc -> RAMO, Qn -> 00, RAMn -> MC
A RAMn -> RAMO, Qn -> O
B Mc -> RAMO, 0-> QO
C On -> RAMO, Mc -> QO, RAMn -> Mc
D Qn -> RAMO, RAMn -> 00, RAMn -> Mc
E Qn -> RAMO, Mc -> QO
F Qn -> RAMO, RAMn -> QO
H for HELP with this menu
R to RETURN to hiqher level

Fiqure 42
Up Shift Choices
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AM29203 ALU SPECIAL FUNCTION SELECT MENU

Enter the value corresponding to the function you wish
to perform

0 Unsigned multiply
1 BCD to Binary conversion
M Multiprecision BCD to Binary conversion
2 Two's complement multiply
3 Decrement by one or two
4 Increment by one or two
5 Sign/Magnitude to two's complement conversion
6 Two's complement multiply
7 BCD divide by 2
8 Single length normalize
9 Binary to BCD conversion
Z Multiprecision Binary to BCD conversion
A Double length normalize, First division op
B BCD ADD
C Two's complement divide
D BCD subtract F = R - S- 1 + Carry-in

E Two's complement divide correction and remainder
F BCD subtract F = S - R 1 + Carry-in
H for HELP with this menu
R to RETURN to higher level

Figure 44
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The ac _ns which take place when a special function is

desired are depicted in Fiqure 43. The process beqins with

r..

the Special Function Menu - Fiqure 44. The choice made by

the microoroqrammer from this menu wi].l determine the

requirement for a carry-in and for shift linkages. There

are no destination choices for the ALU special functions.

Only four ALU operand sources are permitted, and the menu

for these choices is shown as Figure 45. The same carry-in

AM29203 ALU SOURCE SELECT MENU

You have chosen an AM 29203 Special Function

What do you want to do?

Operand R Operand S Mnemonic
Type a 0 RAM A RAM B RAMAB

1 RAM A Direct B RAMAD-
4 Direct A RAM B DARAMB
5 Direct A Direct B DADB
H for HELP with this menu
R to RETURN to higher level

Figure 45

and shift menus used bv the basic functions are used by the

special functions. Special function choices 0, 2-6, 8,9,

and A-F require a carry-in to be chosen; a down shift is

needed for choices 0-2 and 6; special function choices of

9-A will cause the up shift menu to be presented to the

microproqrammer.

After these menus have been completed for the chosen

type of function, the microproqrammer is ready to decide on
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the register address selection, the output and instruction

enables, and the state of the two status registers. The

flow for this part of completion of the ALU portion of the

microinstruction is covered by Figure 46. This part of the

overall ALU process begins with the AM29203 ALU Register

Address Selection. The possible choices are shown in Figure

47. If the microprogrammer makes a choice which will cause

AM29203 ALU REGISTER ADDRESS SELECT MENU

The default is Source A - Instruction Register, Source B -

Instruction Register, Destination - Instruction Register

Enter the value corresponding to the Register Address you
desire

Source A Source B Destination C
0 Pipeline Pipeline Pipeline
1 Instruction Pipeline Pipeline
2 Pipeline Instruction Pipeline
3 Instruction Instruction Pipeline
4 Pipeline Pipeline Instruction
5 Instruction Pipeline Instruction
6 Pipeline Instruction Instruction
7 Instruction Instruction Instruction
H for HELP with this menu
R to RETURN to higher level

Figure 47
Register Address Select

the Instruction Register to be the register address, a

warning will appear telling the microprogrammer that the

Instruction Register must be loaded with the correct

register designation in a previous microinstruction. Should

the microprogrammer choose a register address where Source A
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is the pipeline, another menu will be presented which allows

the microprogrammer to choose the RAM A register desired.

AM29203 ALU RAM REGISTER A MENU

Enter the RAM A Register you wish to use

0 RAM A Register 0
1 RAM A Register 1
2 RAM A Register 2
3 RAM A Register 3
4 RAM A Register 4
5 RAM A Register 5 -
6 RAM A Register 6
7 RAM A Register 7
8 RAM A Register 8
9 RAM A Register 9
A RAM A Register A
B RAM A Register B
C RAM A Register C
D RAM A Register D
E RAM A Register E
F RAM A Register F
H for HELP with this menu
R to RETURN to higher level

Figure 48
RAM A Designation

This menu is included as Figure 48. If the Source B chosen

AM29203 ALU OUTPUT AND INSTRUCTION ENABLES

Do you want the ALU results to go anywhere?

Type a Y for YES;
N for NO

Do you want to change the contents of any ALU register
during this ALU operation-

Type a Y for YES:
N for NO

Figure 49
Output and Instruction Enables
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Figure 50 -
Status Checking
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is the pipeline, a similar menu will be presented for RAM B

register selection. The enable menus are very simple and

require two yes or no answers. The menus for the enables

are shown in Figure 49.

The last decision that must be made concerns the status

registers. The logic used to implement the decision can be

found as Figure 50. The bits affected are I5-IP of the

AM2904 portion of the microinstruction, and the choices from

these menus interact with the data structures and the

procedure WALKCHOICES described in an earlier section. The

first menu which appears is figure 51; it is iteratively

AM2904 STATUS REGISTER MENU

There are two status registers to control
Micro status register
MACRO Status Register

What do you want to do?

Type a 0 to make NO CHANGES to the stauts registers
1 to change the Micro status register
2 to change the MACRO Status Register
H for HELP with this menu
R to RETURN to higher level

Figure 51
Main Status Checking Menu

displayed until the microprogrammer indicates a choice of 0

to not change the status register or a choice to Return.

Both the micro and the Macro status registers can be

controlled. If the microprogrammer desires to change the

micro status register, figure 52, the Micro Status Register
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menu will be presented. The choices from the Micro Status

Register Menu will reflect in the earlier-described set

named CHOICESset, the specific choice from this menu will

appear in the array CHOICES, and all possible bit patterns

for this choice will be entered into the 15-IP linked list.

The same actions will be taken if the microprogrammer

chooses to change the Macro Status Register. The Macro

Status Register Menu is included as figure 53.

AM2904 MACRO STATUS REGISTER MENU

Enter the value corresponding to the action you desire

0 Load the Y inputs into the MACRO Status Register
1 Set all bits if enabled
2 Swap the MACRO Status Register and Micro status register
3 Reset all bits if enabled
4 Swap the MACRO CARRY bit and the MACRO OVERFLOW bit
5 Complement all bits
6 Load all MACRO Status Register from I, Invert Carry
7 Load all MSR from I
H for HELP with this menu
R to RETURN to higher level

Figure 53

D. AM2910 SEQUENCER PORTION OF THE MICROINSTRUCTION

An equally important but less complicated portion of the

microinstruction is organized around the AM 2910 Sequencer.

When the microprogrammer chooses to complete this portion of

the microinstruction, the Master AM2910 Menu is presented.

This menu is found as figure 54. At this point, the micro-

programmer will continue by indicating the desire to select

1.-
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field of the AM2904 portion of the microinstruction. The

hex value chosen from the uo or down shift menus is olaced-

in this field as is the hex value for a desired memory

command. k conditional test requires a hex "c" in this

field to enable the condition codes and the enable the out-

out of a conditional test. The shift values are in the

ranqe of "0" throuqh "F"; the memory command values are "0"

throuqh "A" and "A" throuqh "F." It is imoossible to do a

conditional test in the same microinstruction as a memory

command because there is no common hex value shared between

these actions. A shift linkaqe and a memory command can

occur toqether only if the hex values of the shift linkaqe

match the bit oattern for the memory command. A shift

linkaae and a conditional test may only occur simultaneously

when the shift linkaqe chosen is a "9."

A specific conditional test must also be considered when

discussinq the Shift/Command Field - a forced Pass. A

forced oass will take olace either when the command enable

bit is disabled or when this bit is enabled and the value in

the field will allow CCEN to be hiqh. These values are "0"0"

throuqh "6" and "A" throuqh"D." The shift linkaqe must also

match the memory command. For a forced Pass, it is neces-

sary to first check the command enable bit. If it is not

enabled, the proposed system will check to see if the shift
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With the AM29203 Evaluation Board, three fields within the

microinstruction are sites for potential conflicts: the

Branch Address Field, the Shift/Command Field, and the bits

I5-I in the AM2904 portion of the microinstruction.

The Branch Address Field is mutually-dependent upon the

register address selection field associated with the AM29203

ALU and the AM2910 sequencer command field. If the register

address selection indicates that the pipeline is the source

for a register designation, this register designation is

placed in the Branch Address Field. A sequencer command

which requires a branch address or a value to be placed in

the register/counter will put that address or value into the

Branch Address Field. If the microprogrammer chooses a

register address selection which specifies the pipeline as a

source, the sequencer command will be checked. If both

fields require use of the Branch Address Field, a warning

menu will be displayed. Should the microprogrammer select a

sequence command which causes a value or address to be

placed into the Branch Address Field, the register address

selection will be checked and a warning about a conflict

presented if needed. It is the microprogrammer's

responsibility to correct the situation.

Three other actions which interact are the requirement

for a shift linkage through the AM2904, the selection of a

memory command, and the need to perform a conditional test.

These three actions use the four bits of the Shift/Command
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microprogramming system provides an easy-to-use and secure

method for creating microcode which solves the problem

outlined in the microprogrammers' algorithm.

V. SUMMARY, QUESTIONS, AND FUTURE RESEARCH

A. SUMMARY OF MUTUALLY DEPENDENT FIELDS

The greatest contribution of the proposed microprogram-

ming system is the handling of mutually-dependent fields. A

vertically-organized microinstruction is harder to complete

because several microoperations interact and use a specific

field as a conflict point. A microprogrammer may desire to

perform two microoperations in one microcycle. Logically,

it may be reasonalbe to perform these operations at the same

time, and they could be done at the same time with a

horizontally-formatted microinstruction. These two micro-

operations may store the binary representation for the two

separate actions in the same field. What happens when the

binary representations are different? In a manual micropro-

gramming system, the microprogrammer must remember that

certain fields are shared and check for potential conflicts.

The proposed microprogramming system provides a

mechanism for releasing the microprogrammer from the error

prone and tedious process of keeping track of potential

conflicts. The system will either warn the microprogrammer

of a conflict, or it will attempt to resolve the conflict.
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"9." If the microproqrammer chooses to do both a condi-

tional test and a memory command, a conflict will exist.

None of the memory or miscellaneous commands allow for the

hex value of "9." The microproqrammer will be warned if

such a conflict exists as she builds the microinstruction.

She will probably have to perform the desired functions with

two microinstructions in the event of a conflict.

The written description of the process of creatinq

microroutines and microinstructions is tedious and at times

difficult to understand. Although samples of the menus and

several flow charts are included, it seems that there are

many details that must be remembered. Many actions are also

occurinq; not only are the fields in the microinstructions

beain completed, but linked list pointers are updated and

conflict checking occurs. It should be kept in mind that

the microporgrammer, when usinq this system, is raised

above the level of detail presented in this chapter. The

sequencinq of menus is automatic and predicated upon the

user's choices. The process of checkinq for conflicts

between mutually-dependent fields is invisible to the micro-

proqrammer. The existence of the two linked lists, one as a

master data structure and the other for the AM2qO4 design

Problem, is unknown to the microoroarammer. All that she :"

needs to use this system is her completed algorithm and a

knowledge of the hardware to be controlled. This proposed
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needed, the AM2904 design data structures will be updated

since the Y output is one of the five classes of actions

reflected in the array, set, and linked set. A new vertical

linked list will be added containing the bit patterns for

the choice from the Y output, and this new list will be

pointed to by topYOUT.

The possibility of conflict in the shift/command field

exists. If the ALU special function or the ALU destination

chosen required a shift linkage to be established, the shift

bit will be enabled and the shift linkage chosen by the

microprogrammer will be stored in the shift/command field.

If the bit pattern for the command action just chosen

differs from the bit pattern for the previously entered

shift linkage, a conflict exists. The microprogrammer must

be warned. She may have to consider a different ALU special

function or ALU destination, choose a compatible memory com-

mand, or perform the desired microoperations in two separate

microinstructions. A shift and a memory command can only

coexist in the same microinstruction when their bit patterns

are identical.

A conflict may also exist whenever the microprogrammer

has chosen to do a conditional test. The conditional test

enable (CCEN) and the output enable conditional test (OECT)

must both be a zero for the output of the conditional test -,

to appear on the Y bus. The value in the four bits of the

shift/command field which generates these zeros is a hex
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MEMORY AND MISCELLANEOUS COMMANDS MENU

What do you want to do?

Type a 0 for OEY04 Enable 2904 Y-output
1 for LDIR Load Instruction Register
2 for CONAB Register Address thru ALU to IR
3 for RDMEM Read Memory
4 for WRTMEM Write to Memory
5 for CONBUS Enable constant to B-bus
6 for IFTCH Instruction Fetch
A for READ Read enable
B for WRITE Write enable
C for SAVESTAT Write 2904 status to memory
D for DAVECON Write constant to memory
H for HELP with this menu
R to RETURN to higher level

Memory and Miscellaneous Commands
Figure 62

AM2904 Y OUTPUT MENU

You can output something from the AM2904 onto the Y-bus.

What do you want to do?

Type a 0 to output the Micro status register
1 to output the MACRO Status Register
2 to output the IMMEDIATE inputs from the ALU
3 for NO OUTPUT
H for HELP with this menu
R to RETURN to higher level

Y Output Menu
Figure 63
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specific test to be performed is then chosen from this

second menu. The conditional test is one of the five

classes of actions that determine the bit pattern in bits

15-10. The CTEST will be set in the set CHOICEset, and the

array CHOICES will reflect the test condition chosen by the

microprogrammer. The bit patterns for that choice will also

be added to the linked list, and this vertical list will be

pointed to by the variable topCTEST.

E. MEMORY COMMANDS AND MISCELLANEOUS FUNCTIONS

If the microprogrammer requires an interface with the

main memory or desires to perform some miscellaneous

commands such as instruction fetch, pass a register address

through the ALU into the Instruction Register, or load the

Instruction Register, she will need to access the menu shown

in Figure 62. This menu is called from the Build/Modify

Microinstruction Menu. There are eleven possible choices,

and the choice made by the microprogrammer will be reflected

in the microinstruction by looking at the command enable bit

and the four bits in the shift/command field. The command

bit will be enabled, and the four bits will contain the

choice from the menu. If the choice made by the micro-

programmer is either to enable the 2904 Y output or to write

the 2904 status to memory, the Y output menu is required.

This menu is included as Figure 63. If the y output menu is
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4M2904 CONDITIONAL TEST MENU

What condition do you want reflected bv the conditional test?

Type a 0 for (SIGN exor OVR) or ZERO
1 for (SIGN exnor OVR) and not ZERO
2 for (SIGN exor OVR)
3 for (SIGN exnor OVR)
4 for ZERO
5 for not ZERO
6 for OVR
7 for not OVR
8 for (CARRY or ZERO)
9 for (not CARRY) or (not ZERO)
A for CARRY
B for not CARRY
C for (not CARRY or ZERO)
D for (CARRY or not ZERO)
E for SIGN
F for not SIGN
H for HELP with this menu
R to RETURN to hiqher level

Figure 61
Conditional Test Choices
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microprogrammer; she may choose to force a pass, to force a

fail, or to test a condition. If she selects to test a

condition, two more menus may be required. The logic of

choosing the correct condition test is included as figure

59; Figures 60 and 61 provide the two conditional test

menus. First, the microprogrammer must decide what type of

AM2904 CONDITIONAL TEST MENU

There are two steps to selecting a test condition
1) select a register to be used
2) select a test on that register

This menu selects the registers or two special tests which

combine two registers

What do you want to do?

Type a 0 for the Micro Status register
1 for the MACRO Status Register
2 for the IMMEDIATE status inputs
3 for Immediate sign exor Macro sign
4 for Immediate sign exnor Macro sign
H for HELP with this menu
R to RETURN to higher level

Figure 60
Conditional Register Select

test to perform. Either one of two specific tests can be

done or a register for the test can be selected. If the

microprogrammer chooses to test either of the two status

registers or the immediate status inputs, the second

conditional test menu will be presented [Figure 61]. The
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Figure 59
Conditional Test Select Flow Chart
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further action is needed, the Master NM2qlO Menu will be

displayed to enable a return to the upper levels of the menu

hierarchy. If the selected sequencer command requires a

microproqrammer supplied value for the Branch Address Field,

the Branch Address Menu will be presented for completion.

This menu is included as Fiqure 57.

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
Branch Address Field

The default is 3FF

Type your three-diqit branch address
a H for HELP with this menu

R to RETURN to hiqher level

Fiqure 57
Branch Address Field Completion

A sequencer command may provide for conditional flow of

control within the microroutine. Whenever this type of

command is selected, a Conditional Test Menu wil be pre-

sented. Fiqure 58 lists the choices available to the

AM2910 SEQUENCER CONDITION SELECT

You have chosen an AM2910 Sequencer Command which requires a

conditional test

What do you wnt to do?

Type a P for FORCED PASS
F for FORCED FAIL
T to TEST the condition
H for HELP with this menu
R to RETURN to hiqher level

Fiqure 58
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a sequencer command or return to the Build/Modify Micro-

instruction Menu. If the choice is to continue, the list of

sixteen sequencer commands will be presented in a menu

provided as fiqure 55. The microoroarammer will choose one

of sixteen commands.

AM2910 SEQUENCER COMMAND SELECT MENU

Enter the value correspondinq to the command you desire

0 JZ Jump zero
1 CJS Conditional jump subroutine
2 JMAP Jump map
3 CJP Conditional jump pipeline
4 PUSH Push/ Conditional load reqister/counter
5 JSRP Conditional jump subroutine via reqister or pipeline
6 CJV Conditional jump vector
7 JRP Conditional jump via reqister or pipeline
8 RPCT Repeat loop, counter not equal 0
9 RFCT Repeat counter, counter not equap 0
A CRTN Conditional return from subroutine
B CJPP Conditional jump pipeline and pop
C LDCT Load counter and continue
D LOOP Test for end of loop
E CONT Continue
F TWB Three way branch
H for HELP with this menu
R for RETURN to higher level

Fiqure 55
Choice of Seauencer Commands

The remainder of the actions for this portion of the

microinstruction is determined by the choices for the

sequencer command. Fiqure 56 illustrates these subordinate

actions. Three Possible paths can be followed: No further

choices are required, the Branch Address Field must be

completed, and/or a conditional test is required. If no
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*linkage value is in the correct range. Whenever a conflict

is present, the microprogrammer will receive a warning menu.

The resolution of conflict in bits 15-10 of the AM2904

* Shift/Status chip has already been discussed at length. The

goal with this field is to examine all possible bit patterns

for the choices made, and automatically find a compatible

pattern.

The master data structure is used to keep track of

potential conflicts. Each source of a conflict is

represented by a set named CONFLICTclasses. If a micropro-

grammer should chose the pipeline as a register address

source, RAM will be placed in the set. If the microprogram-

mer should choose the pipeline as a register address source,

will be placed in the set. If the microprogrammer then

selects a shift linkage, the member SHIFT pipeline will be

placed into the set. In the determination and resolution of

conflicts, the choices for the various actions are also

* . needed. The choice for shift and RAM will contain the hex

* . value selected by the microprogrammer from the menu. The

only fields of potential conflict which do not require the

maintenance of the actual values selected from the menus are

the register address selection and the AM2910 sequencer

command. They will only be placed into the set CONFLICT-

classes if the potential exists for conflict. In some

instances, the determination of conflict depends only upon

the membership in the set, such as a conditional test and a
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memory command. Other times the actual values of the

choices must be compared to find a conflict amonq

mutually-dependent fields.

B. STATUS OF THE PROJECT

The proposed microoroqramminq system is not complete.

All selection menus are finished and accessible to the

microprogrammer. She has the ability to complete both the

AM29203 ALU and the AM2910 portions of the microinstruction.

The mechanisms are also workinq which allow all actions on

the four upper level menus to be completed. All choices

from the Master Menu have been tested. The microproqrammer

can also perform the additions, deletions, insertions, and

modifications associated with the Build Microroutine and

Modify Microroutine menus. The overall linked list

structure containinq the names of the microroutines and

their associated microinstruction can be stored to and built

from a disk file.

The major desiqn oroblem has been solved. The proposed

system will process conflicts between mutually-dependent

fields. Earlier sections described the mechanics of

comparison. This information is stored with the

microinstruction because it is necessary to know the most

recent choice made in each of the ten classes of action

which are a list of the fields where a conflict mioht occur
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or originate. The largest source of conflict - bits I5-I -

has been resolved with an automated technique to find

compatible values for the five classes in question. The

design decision in terms of the set membership and actual *

choice comparison have not been implemented. The warning

menus are also not complete. The data structure for bits

I5-I has been designed, and the Pascal code for its

implementation is finished, but no testing has taken

place.

C. AREAS OF QUESTION

The first decision made which requires further inves-

tigation is the use of Pascal as the language for

implementation of the proposed system. It is not a language

well-fitted to an interactive menu driven system; no

facilities exist to clear a screen or to start a menu at the

top of a screen. Feature interaction in Pascal allows only

for static arrays. This restriction caused a heavy reliance

on linked lists because of their dynamic capabilities.

The second area of consideration is the linked lists and

the format of the nodes in the master linked list structure.

Was it necessary to always have the classes of conflict and

the choices within each class available at all times? The

nodes in the linked list were always visible to the entire

system. A less visible structure which provides for
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information hiding and whose purpose is the determination

and resolution of conflict must be considered as a possible

improvement in the system.

A last area of consideration is how the linked list is

used to resolve conflict among the five classes of action

which affect bits I5-I. Is a linked list the best approach

in terms of ability to solve the design problem? Also, is a

separate structure needed to determine conflict among the

shift linkages, memory commands, and conditional test? Are

these mutually-dependent fields of sufficient complexity to

require their own data structure?

D. FUTURE RESEARCH

The main thrust of future research should be the goal of

retargetability. Future researchers need to examine methods

where a microprogrammer can choose various pieces of

microprogrammable hardware and configure her own microin-

struction to control this microprogrammer-defined

architecture. Some of the concerns will be the identifica-

tion of mutually-dependent fields and the compatible values

that they may contain as well as the identification of

conflict. The microprogrammer will also need to be able to

select from existing menus or create new menus online. A

linkage will also be needed from the choices on the menu to

bits in the microinstruction. A future design problem will
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be the automated microcode generator for a user-defined

microproqrammable architecture.

E. CONTRIBUTION OF THE PRODOSED MICROPROGRAMMING SYSTEM

The AM290203 Evaluation Board is primarily used as a

teaching tool in microproqramminq. The architectural design

considerations, for both the chip layout and the

microinstruction format, recuired a vertically-orcanized

microinstruction. The problem of mutually-dependent fields

was complicated and made the task of learnina to microoro-

qram using this evaluation board difficult. The background

idea when considerinq this thesis topic was to remove the

microprogrammer from the requirement to remember and control

the various dependencies within the microword. The Proposed

system can be used by student microproqrammers, and the

system will make the task of producina microroutines easy

and secure.
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